

DYLDAM

Detailed Site Investigation

25 - 33 Brighton Avenue, Croydon Park NSW

E23775.E02_Rev0 20 April 2018

Document Control

Report Title:	etailed Site Investigation
---------------	----------------------------

Report No: E23775.E02_Rev0

Copies Recipient 1. Soft Copy (PDF – Secured, issued by email) Mr Andrew Shehadeh Dyldam Level 1/74 Macquarie Street, Parramatta NSW, 2150 2. Original (Saved to Digital Archives) (Z:\07 - Projects\E23775_Dyldam_Croydon Park\05_Deliverables\Work in Progress\E23775.E02_RevA -DSI.docx.docm) El Australia Suite 6.01, 55 Miller Street, PYRMONT NSW 2009

1/6

	Technical Reviewer MALCOLM DALE Senior Principal – Contaminated Land		
GRBICH ental Scientist			
Details	Date	Amended By	
Original	20 April 2018	-	
	Details	GRBICH MALCOLM DALE Initial Scientist Senior Principal – Cont Details Date	

© 2018 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by EI.

Table of Contents

Page Number

EX	ECUT	IVE SUN	IMARY	I
1.	INTE	RODUCT	ION	1
	1.1	Backgro	und and Purpose	1
	1.2	Propose	d Development	1
	1.3	Regulato	bry Framework	1
	1.4	Project C	Dbjectives	2
	1.5	Scope o	f Works	2
		1.5.1	Desktop Study	2
			Field Work & Laboratory Analysis	2
		1.5.3	Data Analysis and Reporting	3
2.	SITE	E DESCR	IPTION	3
	2.1	Property	Identification, Location and Physical Setting	3
	2.2	Surround	ding Land Use	4
	2.3	Regiona	I Setting	4
	2.4	Groundv	vater Bore Records and Groundwater Use	5
	2.5	Site Wal	kover Inspection	5
3.	PRE		NVESTIGATIONS	6
	3.1	Available	e documents	6
4.	CON	ICEPTU/	AL SITE MODEL	8
	4.1	Contami	nation sources	8
	4.2	Chemica	als of concern	8
	4.3	Other ch	emicals of concern	9
		4.3.1 NEMP)	Per or poly-fluoroalkyl substances (PFAS) (This need updating to PFAS 9	
		4.3.2	Emerging chemicals	9
	4.4	Potentia	I Sources, Exposure Pathways and Receptors	10
	4.5	Data Ga	ps	12
5.	SAN	IPLING,	ANALYTICAL AND QUALITY PLAN (SAQP)	13
	5.1		ality Objectives (DQO)	13
	5.2	Data Qu	ality Indicators	17
6.	ASS	ESSMEN	IT METHODOLOGY	18
	6.1	Sampling	g Rationale	18
	6.2		ation Constraints	18
	6.3	-	nent Criteria	18
	6.4	Soil Inve	estigation	19
	6.5	Groundv	vater Investigation	20

7.	. DATA QUALITY ASSESSMENT			23
8.	RES	ULTS		24
	8.1	Soil Inv	vestigation Results	24
		8.1.1 8.1.2	Site Geology and Subsurface Conditions Field Observations and PID Results	24 24
		0.1.2	rieu observations and rid results	24
	8.2	Ground	dwater Investigation Results	24
		8.2.1	Monitoring Well Construction	24
		8.2.2	Field Observations and Water Test Results	25
	8.3	Labora	tory Analytical Results	26
		8.3.1	Soil Analytical Results	26
		8.3.2	Groundwater Analytical Results	28
9.	SITE		ACTERISATION	29
	9.1	Review	of Conceptual Site Model	29
	9.2	Asbest	os Risk	29
10.	CON	ICLUSI	ONS	29
11.	REC	OMME	NDATIONS	30
12.	12. STATEMENT OF LIMITATIONS			31

Schedule of Figures

No table of figures entries found.

Schedule of Tables

Table 2-1	Site Identification, Location and Zoning	3
Table 2-2	Surrounding Land Uses	4
Table 2-3	Regional Setting Information	4
Table 2-4	Summary of Buildings and Infrastructure	5
Table 3-1	Summary of Previous Investigation Works and Findings	6
Table 4-1	Contaminant Sources	8
Table 4-2	Chemicals Of Concern	8
Table 4-3	PFAS Decision Tree	9
Table 4-4	Emerging or Controlled Chemicals	9
Table 4-5	Preliminary Conceptual Site Model	11
Table 5-1	Summary of Project Data Quality Objectives	14
Table 5-2	Data Quality Indicators	17
Table 6-1	Adopted Investigation Levels for Soil and Groundwater	18
Table 6-2	Summary of Soil Investigation Methodology	19
Table 6-3	Summary of Groundwater Investigation Methodology	20
Table 8-1	Generalised Subsurface Profile (m bgl)	24
Table 8-2	Monitoring Well Construction Details	24
Table 8-3	Groundwater Field Data (GME date 10 April 2018)	26
Table 8-4	Summary of Soil Analytical Results	27

Appendices

APPENDIX A - FIGURES

- A.1 Site location
- A.2 Site sampling locations

APPENDIX B - TABLES

- B.1 Soil results
- B.2 Groundwater results
- B.3 QA/QC results

APPENDIX C – DEVELOPMENT PLANS

- **APPENDIX D SITE PHOTOGRAPHS**
- **APPENDIX E BOREHOLE LOGS**
- **APPENDIX F FIELD DATA SHEETS**
- APPENDIX G CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS
- APPENDIX H LABORATORY ANALYTICAL REPORTS
- APPENDIX I LABORATORY QA/QC POLICIES AND DQOS

APPENDIX J - QA/QC ASSESSMENT

Executive Summary

Background

Mr Andrew Shehadeh of Dyldam engaged El Australia Pty Ltd (El) to conduct a Detailed Site Investigations (DSI) for the property located at 25 - 33 Brighton Avenue, Croydon Park NSW ('the site').

The site is currently occupied by commercial brick buildings and a carpark and is located approximately 10 km southwest of the Sydney central business district (**Figure A.1**). The site comprises of Lot 10 in DP102819 and is situated within the Local Government Area Canterbury-Bankstown Council, covering a total area of approximately 1.47 ha, as depicted in **Figure A.2**.

Objectives

The main objectives of the assessment were to:

- Characterise site environmental conditions in relation to the nature, degree and sources of any soil, vapour and groundwater impacts;
- Target potentially impacted areas identified during the preliminary stages of the assessment for intrusive investigation;
- Understand the influence of site specific, geologic and hydrogeological conditions on the potential fate and transport of any impacts that may be identified;
- Evaluate potential risks that identified impacts may pose to human health and the environment; and
- Where site contamination is confirmed, provide data to assist in the selection and design of appropriate remedial options.

Findings

The work was conducted with reference to the regulatory framework outlined in **Section 1.3** of this report and assessment findings indicated the following:

- The site comprised a rectangular shaped block, covering a total area of approximately 1.47 hectares. The site was bound by Brighton Avenue to the west beyond which were residential and commercial properties; Residential properties to the east; Commercial properties to the north and souths;
- The site was free of statutory notices issued by the NSW EPA/DECC;
- The presence of a diesel bowser and fill points indicated a UST in the South west portion of site in the vicinity of BH7M;
- Soil sampling and analysis were conducted at twenty one (21) targeted test bore locations (BH1M – BH21) down to a maximum depth of 6.4m bgl. Sampling regime was considered to be appropriate for preliminary investigation purposes and comprised judgemental and systematic (triangular grid) sampling patterns, with allowance for structural obstacles (e.g. building walls, underground and overhanging services and other physical obstructions in use by existing operating businesses);
- The sub-surface layers comprised of anthropogenic fill materials underlain by residual clays and sandstone and shale bedrock;

- Groundwater was encountered at depths ranging from 14.35 to 18.25 mAHD;
- Asbestos was reported in fill soils at locations BH3 and BH10M;
- The heavy metals copper, nickel and zinc were identified at levels above the adopted GILS in all groundwater sampling locations. It was concluded that the detected groundwater metal levels do not pose an immediate threat to human health or the environment. Whether these results are treated as exceedances of the GILs, or representative of urban background groundwater conditions, the identified groundwater concentrations are not considered to represent a cause for environmental concern.

On review of the Preliminary Conceptual Site Model (CSM) developed as part of this DSI, it was concluded that the model remains valid for the proposed development. However, due to the absence of the majority of contaminants highlighted within the CSM, the potential risk of complete exposure pathways to exist as highlighted within the CSM, is considered to be low.

Conclusions and Recommendations

Based on the findings of this report and with consideration of the Statement of Limitations (**Section 12**), El concludes that widespread contamination was not identified at the site. It is concluded that the site can be remediated to allow the site to be used for residential/commercial purposes as outlined in the development plan following demolition of the buildings and in accordance with a remedial action plan to address the remaining USTs and any unknown or unexpected contamination identified during the demolition and construction process.

The proposed development includes demolition of the existing site structures and basement excavations, therefore in view of the above findings and in accordance with the NEPM 2013 guidelines; it is considered that the site can be made suitable for the proposed development on completion of the following recommendations:

- 1. Preparation of a remedial action plan (RAP) that outlines:
 - i. Removal of the identified UST and associate infrastructure including the bowser, feed lined and vent pipes.
 - ii. Development of suitable remediation options for identified impacted fill (asbestos) and other excess soil by excavation and disposal or other appropriate method.
 - iii. Document waste classification assessment of soil earmarked for any excavation that may occur including piling waste, backfill material from excavations at the site, in accordance with the EPA (2014) Waste Classification Guidelines;
 - iv. Document preliminary environmental management consideration and a preliminary validation sampling and quality plan;
- 2. Implementation of the RAP, and
- 3. Preparation of a final site validation report by a suitably qualified environmental consultant, certifying site suitability of soils and groundwater for the proposed land use.

1.INTRODUCTION

1.1 Background and Purpose

Mr Andrew Shehadeh of Dyldam engaged El Australia Pty Ltd (El) to conduct a Detailed Site Investigations (DSI) for the property located at 25 - 33 Brighton Avenue, Croydon Park NSW ('the site').

The site is currently occupied by commercial brick buildings and a carpark and is located approximately 10 km southwest of the Sydney central business district (**Figure A.1**). The site comprises of Lot 10 in DP102819 and is situated within the Local Government Area Canterbury-Bankstown Council, covering a total area of approximately 1.47 ha, as depicted in **Figure A.2**.

This assessment was conducted as part of an environmental due diligence process and this report is provided in support of a Development Application (DA) to Canterbury-Bankstown Council and for the purpose of enabling the developer to meet its obligations under the Contaminated Land Management Act 1997 (CLM Act), for the assessment and management of contaminated soil and/or groundwater.

1.2 Proposed Development

The proposed development involves the demolition of the existing site structures and the construction of multiple, 4 or 5 storeyed, mixed commercial and residential apartment buildings. Commercial land-uses will occupy the ground floor and will be limited to the front of the buildings adjacent to Brighton Avenue. The development will include a one to two level basement car park.

Copies of selected development drawings area provided in Appendix C.

1.3 Regulatory Framework

The following regulatory framework and guidelines were considered during the preparation of this report:

- ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;
- DECCW (2009) Guidelines for Implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2014, (UPSS Guidelines);
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- DEC (2017) Guidelines for the NSW Site Auditor Scheme (3nd Edition);
- EPA (1995) Sampling Design Guidelines;
- EPA (2014) Technical Note: Investigation of Service Station Sites;
- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater;
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation;
- Contaminated Land Management Act (1997);
- State Environment Protection Policy Remediation of Land (SEPP 55), and
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.4 Project Objectives

In accordance with the Concept Approval (Ref. Clause 38, City of Canterbury-Bankstown Council DA 2013/245) the proponent is required to undertake a detailed contamination assessment for any future development applications. The primary objectives of this investigation were therefore to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources;
- To investigate the degree of any potential contamination by means of limited intrusive sampling and laboratory analysis, for relevant contaminants; and
- Where site contamination is confirmed, make recommendations for the appropriate management of any contaminated soils and/or groundwater.

1.5 Scope of Works

To achieve the above objectives and generally complying with the OEH (2011) guidelines for consultants reporting on contaminated sites, the scope of works included:

1.5.1Desktop Study

- A review of relevant topographical, geological, hydrogeological and soil landscape maps for the project area;
- Search of historical aerial photographs archived at NSW Land and Property Information to review previous site use and the historical sequence of land development in the neighbouring area;
- A land titles search, also conducted through NSW Land and Property Information for information relating to historical ownership of the site;
- A search of Canterbury-Bankstown Council records for information relating to operational site history and/or relevant environmental incidents;
- A search of NSW EPA Land Information records under the Contaminated Land Management Act (1997) and Protection of the Environment Operations Act (1997);
- Search of SafeWork NSW records for information relating to possible underground tank approvals and locations, and dangerous goods stores; and
- A review of existing underground services on site.

1.5.2Field Work & Laboratory Analysis

- A detailed site walkover inspection;
- Drilling of boreholes at 21 locations (BH1 to BH21), based on the available site history, in accessible areas across the site complying with the minimum sampling protocol recommended under EPA (1995);
- Installation of five groundwater monitoring well to a maximum depth of 6 m (or prior refusal), constructed to standard environmental protocols to investigate potential groundwater contamination;
- Multiple level soil sampling within fill and natural soils and one round of groundwater sampling from the constructed groundwater monitoring well; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation programme.

1.5.3Data Analysis and Reporting

Preparation of a DSI report to document desk study findings, the conceptual site model, data quality objectives, investigation methodologies and investigation results. The report also provides a record of observations made during the detailed site walkover inspection, borehole and monitoring well construction logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

2.SITE DESCRIPTION

2.1 Property Identification, Location and Physical Setting

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure A.1**.

Attribute	Description
Street Address	25 - 33 Brighton Avenue, Croydon Park NSW
Location Description	Approx. 10 km south west of Sydney CBD, bound by Brighton Avenue (west) and residential dwellings north, east and south.
	North eastern corner of site: GDA94-MGA56 Easting: 325177.505, Northing: 6247758.513 (Source: http://maps.six.nsw.gov.au).
Site Area	Approx. 0.67 ha (6, 751 m ² , source: http://maps.six.nsw.gov.au)
Site Owner	Dyldam
Lot and Deposited Plan (DP)	Lot 10 in DP102819
State Survey Marks	Three State Survey (SS) marks are situated in close proximity to the site: SS75308D and SS131351 located on the corner of Brighton Ave and Georges Rd (north-east of the site) on the corner of Hampstead Road and The Crescent and SS71393 and SS99220D (north-east of the site) on The Crescent and Kessell Ave. (Source: <u>http://maps.six.nsw.gov.au</u>).
Local Government Authority	Canterbury-Bankstown Council
Parish	Leichhardt
County	Cumberland
Current Zoning	IN2 – Light Industrial (Canterbury City Council Local Environment Plan, 2012)
Current Land Uses	Eastern area – Large commercial warehouse currently in use as a kitchen stone distributer; and Western area – Open air car park associated with warehouse.

 Table 2-1
 Site Identification, Location and Zoning

At the time of this assessment the site was occupied by a large commercial warehouse with an associated open aired carpark which contained a diesel bowser. The assessment area is illustrated in **Figure A.2**.

2.2 Surrounding Land Use

The site is situated within an area of mixed land uses and current uses. Current uses of surrounding land are described in **Table 2-2**.

Direction Relative to Site	Land Use Description
North	Residential dwellings
South	Residential dwellings
East	Residential dwellings
West	Brighton Ave followed by residential dwellings

Sensitive land uses, such as schools or childcare centres, were not identified within the vicinity the site.

2.3 Regional Setting

Regional topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-3**.

Attribute	Description
Ground Topography The site slopes towards the south to south-west based on observations made site walkover inspection.	
Site Drainage	Site drainage is likely to be consistent with the general slope of the site. Stormwater is likely to be collected by pit and pipe drainage, and drain either to the municipal stormwater system or to Cooks River, located approximately 500 m south of the site.
Regional Geology	With reference to the 1:100,000 scale Geological Series Sheet 9130 (Sydney), the site is located within close proximity to the contact of the Ashfield Shale and Bringelly Shale. Ashfield Shale is described as black to dark-grey shale and laminite, while the Bringelly Shale is described as shale, carbonaceous claystone, laminite, fine to medium-grained lithic sandstone, rare coal and tuff.
Soil Landscapes	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Chapman and Murphy, 2002) indicates that the site overlies the Blacktown soil landscape, which is described as gently undulating rises on the Wianamatta Group shales, with shallow to moderately deep (<100 cm) red and brown podzolic soils on crests, upper slopes and well drained areas; deep (150 – 300 cm) yellow podzolic soils and soloths on lower slopes and in areas of poor drainage.
Acid Sulfate Soil Risk	The Canterbury City Council LEP 2012 Acid Sulfate Soils Map (Sheet_006) shows the site to be within areas mapped as <i>Class 5</i> Acid Sulfate Soils (ASS). Class 5 ASS are located within 500 m on adjacent Class 1,2,3 or 4 land. Works in class 5 areas that are likely to lower the water table by 1 mAHD and by which the water table is likely to be lowered below 1 mAHD on adjacent Class 1, 2, 3 or 4 land.
	With reference to the Prospect Parramatta Acid Sulfate Soil Risk Map (1:25,000 scale; Murphy, 1997), the site is located within an area of no known occurrences.

Table 2-3 Regional Setting Information

Attribute	Description
Nearest Surface Water Feature	Cooks River, located approximately 500 m south of the site.
Anticipated Groundwater Flow Direction	South towards Cooks River.

2.4 Groundwater Bore Records and Groundwater Use

An online search of registered groundwater bores was conducted by EI on the 4th of April 2018 through the NSW Office of Water (Ref. http://allwaterdata.water.nsw.gov.au/water.stm). There were no registered bores within about 500m of the site.

2.5 Site Walkover Inspection

El staff made a number of observations during a detailed site inspection on 19 - 20 March 2018. The recorded observations are summarised in **Table 2-4**.

Allotment	Buildings	USTs/ASTs	Observations
25 - 33 Brighton Avenue, Croydon Park NSW	Large commercial warehouse	Diesel bowser and vent pipes indicated a UST on the western portion of site.	The site is occupied by a large commercial warehouse. The warehouse is currently being used as a kitchen stone business . A diesel bowser was observed to be in average condition. The large warehouse has previously been used to store aggregate/cement/metal and steel materials used for building supplies.

 Table 2-4
 Summary of Buildings and Infrastructure

Photographs of the site area are provided in Appendix D.

3. PREVIOUS INVESTIGATIONS

3.1 Available documents

A previous environmental investigation in the form of a Preliminary Site Investigation was conducted on the site by El in 2016. DP documented their findings in a report titled *Preliminary Site Investigation*, 15 – 33 Brighton Avenue, Croydon Park NSW (Ref. E22142 AA_Rev0, dated 26 May 2016), which provided an overall indication of contamination of the proposed development. A summary of El's works and key findings is outlined in **Table 3-1**.

 Table 3-1
 Summary of Previous Investigation Works and Findings

Assessment Details	Project Tasks and Findings	
Preliminary Site Investigation (El, 2016)		
Background and Objectives	Croydon 88 Pty Ltd ("the Client") engaged Environmental Investigations Australia Pty Ltd (EI) to conduct a Preliminary Site Investigation (PSI) for the property located at address 15-33 Brighton Avenue, Croydon Park NSW ('the site'). This environmental assessment was completed as part of a development application package to Canterbury City Council for the proposed rezoning of the site from industrial to residential with the demolition of existing site structures and the construction of multiple-residential apartment buildings. At the time of this assessment, the site was occupied by six, separate commercial / industrial warehouses. The site covered a total area of 1.47 ha. The main objective of this investigation was to preliminary characterise the environmental	
	conditions of the site on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources.	
Key Findings	 Historical records review of land titles records and historic aerial photography showed that the site was residential in nature until between the late-1940s and 1980s, and has remained industrial as such until present; A search of Canterbury City Council records identified that various commercial and industrial activities have been undertaken on the site, since at least 1980s. An environmental assessment was undertaken in 2008 at 17 Brighton Ave, which identified evidence of oil spillage, with no precautionary methods in place to prevent discharge into the stormwater system; At the time of this assessment the site was occupied by six large commercial / industrial warehouses and one former residential dwelling, with unsealed and sealed areas surrounded the sit building; The site was free of statutory notices issued by the NSW EPA/OEH. Records pertaining to the site were not identified on the List of NSW contaminated sites notified to EPA or the Protection of the Environment Operations (POEO) public register; There have been no licences issued for the site and surroundings areas under the POEO Act 1997; A search of SafeWork NSWs Stored Chemical Information Database (SCID) and the microfiche records for the site could not be initiated due landowner consent, which was pending at the time of writing; The site walkover inspection identified the following areas of environmental concern: Access to the properties located at 15 – 21 Brighton Ave, Croydon Park was unavailable at the time of writing, however, it is understood that a radiator mechanical workshop occupies the property at 19 Brighton Ave; Potential for hazardous building materials to be present in site structures was observed across the site; 	

Assessment Details	Project Tasks and Findings
	 Potential for fill material of unknown origin to be present across the site;
	 A possible lift / hoist system was identified at 23 Brighton Ave; and
	 The presence of a diesel underground storage tank and bowser was identified within the south western corner of the site.
	 A conceptual site model (CSM) and subsequent qualitative risk assessment was derived for the site in this PSI. The CSM identified potential contaminating sources that may occur at the site and evaluated the likelihood for relevant exposure pathways to be completed during and after the proposed development. The risk assessment was conducted with respect to the proposed development, which involves sensitive land use (residential with minimal access to soils). The qualitative risk assessment identified a general medium risk of contamination to be present at the site.
Conclusions and Recommendations	Given the nature and extent of the proposed rezoning and redevelopment, a soil and groundwater sampling program, as well as a hazardous materials survey, are warranted to quantify any contamination risks and to inform the selection and implementation of remedial and risk mitigation measures (if required). Taking into account the above considerations and subject to the statement of limitations, EI concludes that there is a moderate risk associated with soil / and or groundwater contamination on site. EI considers that the site can be made suitable for the proposed residential rezoning and residential development provided a Detailed Site Investigation
	(DSI) is carried out to assess soil and groundwater conditions at the site.
	 El provide the following recommendations: Conduct a detailed site investigation (DSI) to characterise site soils and groundwater
	to provide baseline data for evaluation of any remedial and management requirements that may be necessary to allow the site to be made suitable for the proposed residential rezoning; and
	 Conduct a Hazardous Materials Survey (HMS) of current equipment and structures, and stored products, chemicals and wastes present at the site. El recommend that a HMS is conducted prior to decommissioning and demolition of site structures. The HMS is required to aid post-closure activities and avoid additional site contamination.

4. CONCEPTUAL SITE MODEL

In accordance with NEPM (2013) Schedule B2 – Guideline on Site Characterisation and to aid in the assessment of data collection for the site, EI developed a preliminary conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

4.1 Contamination sources

Base on the site history and the site inspection, the primary contaminant sources considered to be present at the site are outlined in **Table 4-1**.

Contaminant Source	Comment	Potential Impacts
Surface filling		A wide range of potential inorganic and organic chemicals and asbestos
Demolition of former buildings		Potential paint and fibrous cement sheeting fragments potentially containing asbestos
Degradation of building surfaces (including fences)		Priority metals particularly Cu, Pb & Zn, paint fragments and asbestos fines.
Underground storage tanks (USTs) or UPSS		Potential impact to soils and groundwater if the UST or associated infrastructure were to leak.
Contamination form off-site sources	3	Potential groundwater contamination from off-site industrial sources
Potential contamination in areas no accessible during investigations	t	Potential impact from future demolition due to structure materials

 Table 4-1 Contaminant Sources

4.2 Chemicals of concern

Based on the findings of the site contamination appraisal, the chemicals of concern at the site and the potential media impacts are outlined in **Table 4-2**. For definitions and abbreviations see glossary at end of report.

 Table 4-2
 Chemicals Of Concern

Chemical	Soil Impacts ¹	Air Quality ¹ Impacts	Groundwater Impacts ¹
Priority metals As, Cd, Cr, Cu, Hg, Ni, Pb, & Zn also commonly known as heavy metals (HMs)	М	L	М
Other metals Be, Co, Cr ^{VI} , Mn, Se	L	L	L
Total recoverable hydrocarbons (TRH)	М	L	М
Monocyclic aromatic hydrocarbon compounds benzene, toluene, ethyl benzene and xylenes (BTEX)	М	L	М

Polycyclic aromatic hydrocarbons (PAH) including B(a)P TEQ	Μ	L	М
Volatile organic compounds (VOCs) including Chlorinated volatile organic compounds (CVOCs)	Μ	L	М
Organochlorine and Organophosphate pesticides (OCP/ OPP)	Μ	L	L
Polychlorinated biphenyls (PCB)	М	L	L
Asbestos	М	L	N/A
LNAPL or DNAPL	L	N/A	L
Others (See section 2.3)	L	L	L

Note 1 L - low risk, M - medium/moderate risk, H - high risk, N/A - not applicable (or "-")

4.3 Other chemicals of concern

4.3.1Per or poly-fluoroalkyl substances (PFAS) (This need updating to PFAS NEMP)

The NSW EPA (2017) auditor guidelines require that PFAS is considered in assessing contamination. El use the following decision tree (**Table 4-3**) based on EnRisk (2016) for prioritising the potential for PFAS to be present on site and whether PFAS sampling of soil and water is required.

 Table 4-3
 PFAS Decision Tree

Preliminary Screening	Decision
Did fire training occur on-site?	Y/N
Did fire training occur, or is an airport or fire station upgradient of or adjacent to the site? ¹	Y/N
Have "fuel" fires ever occurred on-site? e.g. ignition of fuel (solvent, petrol, diesel, kero) tanks?	Y/N
Have PFAS been used in manufacturing or stored on-site ? ²	Y/N
If Yes to any questions, has site analytical suite been optimised to include preliminary sampling and testing for PFAS in soil (ASLP Testing) and water?	Y /N

Note 1 Runoff from fire training areas may impact surface water, sediment and groundwater.

Note 2 PFAS is used wide range of industrial processes and consumer products, including in the manufacture of non-stick cookware, specialised garments and textiles, Scotchguard[™] and similar products (used to protect fabric, furniture, leather and carpets from oils and stains), metal plating and in some types of fire-fighting foam (https://www.nicnas.gov.au/chemical-information/factsheets/chemical-name/perfluorinated-chemicals-pfas)

4.3.2 Emerging chemicals

The NSW EPA uses Chemical control orders (CCOs) as a primary legislative tool under the EHC Act (1985) to selectively and specifically control particular chemicals of concern, and limit their potential impact on the environment. CCOs provide the EPA a rapid and flexible mechanism for responding to emerging chemical issues. As with PFAS, EI has considered chemicals controlled by CCOs and other potential emerging chemicals in this assessment as outline in **Table 4-4**.

Table 4-4 Emerging or Controlled Chemicals

Chemicals of Concern (CCO or emerging)	Decision
Were aluminium smelter wastes used or stored on site (CCO,1986)?	Y/N
Do dioxin contaminated wastes (CCO,1986) have the potential to impact the site?	Y/N

1

Were organotin products (CCO,1989) used or stored on site ? ²	Y/N
Were polychlorinated biphenyls (PCBs) used or PCB wastes (CCO, 1997) stored on-site? ³	Y/ N
Were scheduled chemical or wastes (CCO, 2004) used or stored ⁴	Y/N
Are other emerging chemicals suspected? ⁵	Y/N
If Yes to any questions, has site sampling suite been optimised to include specific sampling for other chemicals of concern in soil, air and water	Y/N

Note 1 From burning of certain chemicals, smelting or chemical manufacturing or fire on or near the site.

Note 2 From anti-fouling paints used or removed at boat & ship yards and marinas.

Note 3 From older transformer oils & electrical capacitors

Note 4 Twenty-four mostly organochlorine pesticides and industrial by-products

Note 5 Other chemicals considered as emerging e.g. 1,4 dioxane (associated with some cVOCs),

4.4 Potential Sources, Exposure Pathways and Receptors

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways in **Table 4-5**.

Table 4-5Preliminary Conceptual Site Model

Site Area	Subsurface Profile	Potential Sources	Potential Contaminants	Media	Sensitive Receptor	Migration & Exposure Pathways	Potential Risk of Complete Exposure Pathway
(overall site area) 25 - 33 Brighton Avenue, Croydon Park NSW	Anthropogenic fill overlying residual clays	Commercial activities, UPSS, asbestos sheeting, filling, termiticides, lead paint, vehicle storage, general waste.	Pesticides, Heavy Metals, Petroleum Hydrocarbons (including PAHs), OCPs, Asbestos, Unknown	Building fabric Soils/Bedrock Groundwater Air/Soil Vapour LNAPL/DNAPL (if present)	Cooks River Site Workers during demolition and construction Future site residents	Seepage into the subsurface soils, bedrock and groundwater. Dermal Contact Ingestion Inhalation	 M – H (should contamination be present) M – H (should contamination be present) L (post development)

Notes: L = Low Risk; M = Moderate Risk; H = High Risk

4.5 Data Gaps

Based on information from the site walkover inspection and site history review, EI considered a programme of intrusive investigation was warranted to conduct targeted sampling at locations of known, potential sources of contamination (as listed in **Section 4.1**), with systematic sampling coverage in site areas where operational site history was not documented.

5. SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)

The SAQP plays a crucial role in ensuring that the data collected as part of this, and ongoing environmental works carried out at the site are representative, and provide a robust basis for site assessment decisions. This SAQP includes the following:

- Data quality objectives, including a summary of the objectives of the ESA;
- Investigation methodology including media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Analysis Methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

5.1 Data Quality Objectives (DQO)

In accordance with the USEPA (2006) *Data Quality Assessment* and the DEC (2006) *Guidelines for the NSW Site Auditor Scheme*, the process of developing Data Quality Objectives (DQO) was used by the EI assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in **Table 5-1**.

Table 5-1 Summary of Project Data Quality Objectives

DQO Steps (NSW DEC, 2006)	Details	Comments (changes during investigation)
1. State the Problem Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual site model	The site is to be developed for multi storey commercial/residential development including a one to two level basement. Historical information and site inspection identified the potential for contamination to be present in site soil and/or groundwater, contributed by various potential sources listed in Section 4.1 . In light of the information derived from the available site history information and site observations, a conceptual site model has also been developed (Section 4). The investigation sampling must provide supportive information on the environmental conditions of the site to determine the site's suitability for the proposed development.	
2. Identify the Goal of the Study (Identify the decisions) Identify the decisions that need to be made on the contamination problem and the new environmental data required to make them	 Based on the objectives outlined in Section 1.4 the decisions that need to be made are: Has the nature, extent and source of any soil, vapour and/or groundwater impacts onsite been defined? What impact do the site specific, geologic and hydrogeological conditions have on the fate and transport of any impacts that may be identified? Does the level of impact coupled with the fate and transport of identified COPCs represent an unacceptable risk to identified human and/or environmental receptors on or offsite? Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, if necessary? 	

DQO Steps (NSW DEC, 2006)	Details	Comments (changes during investigation)
3. Identify Information Inputs (Identify inputs	Inputs to the decision making process include:	
to decision)	 Proposed development plans and future land use; 	
Identify the information needed to support any	 Available historical site information and site information; 	
decision and specify which inputs require new	• Areas of concern identified during the site inspection prior to intrusive investigations;	
environmental measurements	 National and NSW EPA guidelines endorsed under the NSW Contaminated Land Management Act 1997; 	
	 Investigation sampling (soils and groundwater) and laboratory analysis for COPCs to verify the presence of onsite contamination and to evaluate the potential risks to sensitive receptors; and 	
	At the end of the assessment, a decision must be made regarding whether the soils and	
	groundwater are suitable for the proposed development, or if additional investigation or	
	remedial works are required to make the site suitable for proposed use).	
4. Define the Boundaries of the Study	Lateral – The boundaries of the study are defined as the sites cadastral boundaries.	
Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision	Vertical – From the existing ground level, fill and natural soils.	
	Temporal – Results are valid on the day of data and sample collection and remain valid	
	as long as no changes occur on site or contamination (if present) does not migrate on site or on to the site from off-site sources.	
5. Develop the Analytic Approach (Develop a	The decision rules for the investigation were:	
decision rule)	 If the concentrations of contaminants in the soils data exceed the land use criteria; 	
To define the parameter of interest, specify the	then assess the need to further investigate the extent of impacts onsite.	
action level, and integrate previous DQO	• The waste classification for off-site disposal of excavated materials is determined on	
outputs into a single statement that describes a logical basis for choosing from alternative	the basis of soil sampling and laboratory analysis for a relevant suite of analytical parameters.	
actions	 Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 5-2. 	

DQO Steps (NSW DEC, 2006)	Details	Comments (changes during investigation)
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data	 Specific limits for this project are to be in accordance with the appropriate NSW EPA guidance, appropriate indicators of data quality and standard procedures for field sampling and handling: The null hypothesis for the investigation is that the: 95% Upper Confidence Limits (UCL) of the mean for contaminants of concern exceed the relevant criteria HIL-A in deep planting area, exceed the relevant HIL-B in the proposed basement area, and HSL-A&B criteria across the site. Sampling on a 18.2 m grid will allow detection of a circular hotspot with a diameter of nominally 21.5 m with 95% certainty. The acceptance of the site as validated will be based on the probability that the 95% UCL of the mean of the data will satisfy the given site criteria. Therefore a limit on the decision error will be 5% that a conclusive statement may be incorrect. Concentrations of soil COPC that are below investigation criteria, made or approved by the NSW EPA, will be treated as acceptable and indicative of suitability for the proposed land use(s).	
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs	 The site area (6,751 m²) required five (15) sampling points according to EPA (1995) Sampling Design Guidelines. Soil sampling locations were set using a systematic sampling pattern across the accessible areas of the site. An upper soil profile sample (beneath the concrete hardstand) will be collected at each borehole location and tested for chemicals of concern to assess the conditions of the fill layer, and impacts from activities above ground. Further sampling would also be carried out at deeper soil layers. These samples would be selected for testing based on field observations whilst giving consideration to characterise the subsurface soil stratigraphy. 	

5.2 Data Quality Indicators

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in **Table 5-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Section 7**.

Data Quality Objective	Data Quality Indicator	Acceptable Range
Accuracy	Field – Trip blank (laboratory prepared) Laboratory – Laboratory control spike and matrix spike	< laboratory limit of reporting (LOR) Prescribed by the laboratories
Precision	Field – Blind replicate and spilt duplicate Laboratory – Laboratory duplicate and matrix spike duplicate	< 30 % relative percentage difference (RPD [%]) Prescribed by the laboratories
Representativeness	Field – Trip blank (laboratory prepared) Laboratory – Method blank	< laboratory limit of reporting (LOR) Prescribed by the laboratories
Completeness	Completion (%)	-

Table 5-2 Data Quality Indicators

6. ASSESSMENT METHODOLOGY

6.1 Sampling Rationale

With reference to the preliminary CSM described in **Section 4**, soil and groundwater investigation works were planned in accordance with the following rationale:

- Sampling fill and natural soils from 20 test bore locations located systematically across the site using a grid-based sampling pattern to characterise in-situ soils;
- Sampling groundwater during a single groundwater monitoring event (GME) at five monitoring wells located close to the up gradient and down gradient site boundaries and immediately down gradient of the UST area, to assess for potential groundwater impacts; and
- Laboratory analysis of representative soil and groundwater samples for the identified chemicals of concern.

6.2 Investigation Constraints

The number of test bores drilled and monitoring wells installed during the investigation phase achieved the planned investigation scope described in **Section 5.1**.

6.3 Assessment Criteria

The assessment criteria proposed for this project are outlined in **Table 6-1**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPM, 2013 Soil HILs, EILs, HSLs, ESLs & Management Limits for TPHs	 Soil Health-based Investigation Levels (HILs) Samples were assessed against the NEPM 2013 HIL-B thresholds for residential sites with limited access to soils as the majority of the site is proposed to be covered by hardstand Ecological Investigation Levels (EILs) Any retained soils are proposed to be covered by hardstand, hence comparing results to EILs was considered unwarranted. Soil Health-based Screening Levels (HSLs)
		The NEPM 2013 Soil HSL-D thresholds for commercial/industrial sites for vapour intrusion would be applied to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX & naphthalene due to the basements planned use as a carpark.
		Soils asbestos results to be assessed against the NEPM 2013 Soil HSL thresholds for "all forms of asbestos".
		Management Limits for Petroleum Hydrocarbons
		Should the ESLs and HSLs be exceeded for petroleum hydrocarbons, soil samples would also assessed against the NEPM 2013 <i>Management Limits</i> for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards & adverse effects on buried infrastructure.

Table 6-1 Adopted Investigation Levels for Soil and Groundwater

Adopted

Guidelines

Environmental

Groundwater

Media

for Marine Waters	NEPM 2013 provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZECC & ARMCANZ 2000 Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative metals <i>cadmium</i> and <i>mercury</i> . The marine criteria were considered relevant as the closest, potential surface water receptor was Cooks River, located 550m south of the site and understood to be tidally influenced.
NEPM, 2013 Groundwater HSLs for Vapour Intrusion	Health-based Screening Levels (HSLs) The NEPM 2013 groundwater HSLs for vapour intrusion were used to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene impacts. The HSL <i>D</i> thresholds for industrial/commercial sites were applied for groundwater due to the basements planned use as a carpark.
NEPM, 2013 GILs for Drinking purposes	Drinking Water GILs The NEPM (2013) GILs for drinking water quality were applied for specific parameters, for which freshwater/marine GILs were not provided. These were based on the Australian Drinking Water Guidelines (Ref. NHMRC, 2011).

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). SILs and GILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in Section 8.

6.4 Soil Investigation

The soil investigation works conducted at the site are described in Table 6-2. Test bore locations are illustrated in Figure A.2.

Activity/Item	Details
Fieldwork	The site investigation was conducted on 19 and 20 of March 2018. All test bores were completed to target depth or refusal.
Drilling Method & Investigation Depth	Test bore BH2 was drilled using a Hanjin D+B (model), mechanical, track-mounted, solid flight auger drilling rig. Final bore depths were between 0.6and 6.4 mBGL.
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Unified Soil Classification System (USCS) and Australian Standard (AS) 4482.1-2005. Bore logs are presented in Appendix E .

Table 6-2 Summary of Soil Investigation Methodology

Activity/Item	Details
Field Observations (including visual and olfactory signs of potential contamination)	 A summary of field observations is provided, as follows: No visual signs of contamination were observed and no suspicious odours were detected during any stage of the field investigation programme; fibre cement sheet fragments were not observed in any drilling cuttings; and Ash was noted in fill at location BH10M.
Soil Sampling	 Soil samples were collected using a dry grab method (unused, dedicated nitrile gloves) & placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars. Blind field duplicates was separated from the primary samples and placed into glass jars. A small amount of duplicate was collected from each soil samples and placed into zip-lock bag for Photo-ionisation Detector (PID) screening. A small amount of duplicate was separated from all fill samples and placed into a zip-lock bag for asbestos analysis.
Decontamination Procedures	<i>Drilling Equipment</i> - The drilling rods were decontaminated between sampling locations with potable water until the augers were free of all residual materials. <i>Sampling Equipment</i> – Dedicated gloves were used for each sample, and any trowel or shovel used was decontaminated between uses.
Sample Preservation	Samples were stored in a refrigerated (ice-filled) chest, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.
Quality Control & Laboratory Analysis	A number of soil samples were submitted for analysis of previously-identified COPC by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes, as discussed in Section 8 .
Soil Vapour Screening	Screening for potential VOCs in collected soil samples was conducted using a Photo- ionisation Detector (PID), as volatile odours were not detected at any sampling location during the course of the fieldwork.

6.5 Groundwater Investigation

The groundwater investigation works conducted at the site are described in **Table 6-3**. Monitoring well locations are illustrated in **Figure A.2**.

Activity/Item	Details
Fieldwork	Groundwater monitoring wells were installed and developed on 19 and 20 of March 2018; whereas, water level gauging, well purging, field testing and groundwater sampling was conducted on 10.04.2018.

 Table 6-3
 Summary of Groundwater Investigation Methodology

Activity/Item	Details					
Well Construction	 Test bores were converted to groundwater monitoring wells as follows: one, 6.1m deep, onsite well identified as BH1M; one, 6 m deep, onsite well identified as BH4M; one, 6.2 m deep, onsite well identified as BH7M; one, 6.1 m deep, onsite well identified as BH10M; and one, 6.4 m deep, onsite well identified as BH13M. Drilled by Geosense using a track-mounted, Hanjin D+B, mechanical, solid-flight auger rig. Well construction details are tabulated in Table 8-2 and documented in the bore logs presented in Appendix E. All wells were installed to screen the natural within the approximate interval of 3.0 to 6.0 mBGL. 					
Well Construction (continued)	 Well construction was in general accordance with the standards described in NUDLC, 2012 and involved the following: 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in shallow wells set to screen to at least 500 mm above the standing water level to allow sampling of phase-separated hydrocarbon product, if present; base and top of each well was sealed with a uPVC cap; annular, graded sand filter was used to approximately 300mm above top of screen interval; granular bentonite was applied above annular filter to seal the screened interval; drill cuttings were used to backfill the bore annulus to just below ground level; and surface completion comprised a steel road box cover set in neat cement and finished flush with the concrete slab level. 					
Well Development	Well development was conducted for each well directly following installation. This involved agitation within the full length of the water column using a dedicated, HDPE, disposable bailer, followed by removal of water and accumulated sediment using a 12V, HDPE submersible bore pump (Proactive Environmental, model Super Twister). Pumping was continued until no further reduction in suspended sediment was observed (i.e. after removal of several well volumes).					
Well Survey (Elevation and location)	Well elevations at ground level were extrapolated from the spot elevations marked on the survey plan provided by the client. Well elevations at ground level were extrapolated in metres relative to Australian Height Datum (m AHD).					
Well Gauging & Groundwater Flow Direction	Monitoring wells were gauged for standing water level (SWL, depth to groundwater) prior to well purging at the commencement of the GME on 10 April 2018. All measured SWLs are shown in Table 8-2 . A transparent HDPE bailer was used to visually assess for the presence PSH prior to the commencement of well purging. PSH was not detected in either well. Based on the reduced water levels (RWLs, i.e. SWLs corrected to AHD) calculated at each monitoring well (Table 8-3). The direction of groundwater flow in the aquifer was inferred to be in a southwest direction. This is consistent with the anticipated groundwater flow direction, as inferred considering the proximity of the site to Cooks River.					

Activity/Item	Details					
Well Purging & Field Testing	No volatile organic odours were detected during any stage of well purging. Measurement of water quality parameters was conducted repeatedly during well purging and were recorded onto field data sheets (Appendix F) once water quality parameters stabilised. In both MW1 and MW3, groundwater was initially observed to be slightly grey/brown in colour with suspended sediments (SS). SS levels reduced as purging was continued. Field measurements for Dissolved Oxygen (DO), Electrical Conductivity (EC) and pH of the purged water were also recorded during well purging. Purged water volumes removed from each well and field test results are summarised in Table 8-3.					
Groundwater sampling	Groundwater was sampled using a micro-purge system. Water was continuously measured for four parameters (Temperature, EC, Redox, DO, pH). Once three consecutive field measurements were recorded for the purged waters to within \pm 10% for DO, \pm 3% for EC, \pm 0.2 for pH, \pm 0.2° for temperature and \pm 20 for redox, this was considered to indicate that representative groundwater quality had been achieved and final physico-chemical measurements were recorded. Groundwater samples were then collected from the micro-purge sampling pump discharge point.					
Decontamination Procedure	 The micro-purge pump is decontaminated in a solution of potable water and Decon 90 and then rinsed with potable water between measurements/wells between uses. 					
	 The micro-purge system employs a disposable bladder and tubing system to further minimise potential contaminates. 					
	 All sample containers were supplied by the laboratory for the particular project and only opened once immediately prior to sampling. 					
	 Ice packs were used to keep the samples cool when kept in an insulated chest. The water level probe and water quality kit probes were washed in a solution of potable water and Decon 90 and then rinsed with potable water between measurements/wells. 					
Sample Preservation	Sample containers were supplied by the laboratory with the following preservatives:					
	 one, 1 litre amber glass, acid-washed and solvent-rinsed bottle; two, 40ml glass vials, pre-preserved with dilute hydrochloric acid, Teflon-sealed; and 					
	 one, 250mL, HDPE bottle, pre-preserved with dilute nitric acid (1 mL). 					
	Samples for metals analysis were field-filtered using 0.45 µm pore-size filters. All containers were filled with sample to the brim then capped and stored in ice-filled chests, until completion of the fieldwork and during sample transit to the laboratory.					
Quality Control & Laboratory Analysis	All groundwater samples were submitted for analysis of previously-identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes.					
Sample Transport	After sampling, refrigerated sample chests were transported to SGS Australia Pty Ltd using strict Chain-of-Custody (COC) procedures. Inter-laboratory duplicate (ILD) samples were forwarded to Envirolab Services Pty Ltd (Envirolab) for QA/QC analysis. A Sample Receipt Advice (SRA) was provided by each laboratory to document sample condition upon receipt. Copies of SRA and COC certificates are presented in Appendix G .					

7.DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if these data meet the objectives of the project (Ref. USEPA 2006). Data quality assessment includes an evaluation of the compliance of the field sampling and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements obtained.

The data quality assessment process for this assessment included a review of analytical procedures to confirm compliance with established laboratory protocols and an assessment of the accuracy and precision of analytical data from a range of quality control measurements. The QC measures generated from the field sampling and analytical program were as follows:

- suitable records of fieldwork observations including borehole logs;
- relevant and appropriate sampling plan (density, type, and location);
- use of approved and appropriate sampling methods;
- preservation and storage of samples upon collection and during transport to the laboratory;
- complete field and analytical laboratory sample COC procedures and documentation;
- sample holding times within acceptable limits;
- use of appropriate analytical procedures and NATA-accredited laboratories; and
- required LOR (to allow for comparison with adopted IL);
- frequency of conducting quality control measurements;
- laboratory blanks;
- field duplicates;
- laboratory duplicates;
- matrix spike/matrix spike duplicates (MS/MSDs);
- surrogates (or System Monitoring Compounds);
- analytical results for replicated samples, including field and laboratory duplicates and interlaboratory duplicates, expressed as Relative Percentage Difference (RPD); and
- checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements.

The findings of the data quality assessment in relation to the soil and groundwater investigations at the site are discussed in detail in **Appendix J**. QA/QC policies and DQOs are presented in **Appendix I**.

On the basis of the analytical data validation procedure employed the overall quality of the soil and groundwater analytical data produced for the site were considered to be of an acceptable standard for interpretive use.

8.RESULTS

8.1 Soil Investigation Results

8.1.1Site Geology and Subsurface Conditions

The general site geology encountered during the drilling of the soil investigation boreholes, installation of monitoring wells may be described as a layer of anthropogenic filling overlying residual clay, with sandstone then shale at depth. The geological information obtained during the investigation is summarised in **Table 8-1** and borehole logs from these works are presented in **Appendix E**.

Layer	Description	Depth to top & bottom of layer (m bgl)
Fill	Clayey SAND; fine to coarse grained, dark brown, with angular to sub-angular gravels, no odour.	0.0 – 0.5 (max depth 1.3)
Residual clay	Silty CLAY; low to medium plasticity, orange mottled grey, no odour.	0.5 – 6.1 +
Bedrock	Sandstone /Shale	1.0 - 6.2 +

Table 8-1 Generalised Subsurface Profile (m bgl)

Notes: + Termination depth of borehole

8.1.2Field Observations and PID Results

Soil samples were obtained from the test bores at various depths ranging between 0.2 m to 5.3 m bgl. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, charcoal) and the following observations were noted:

- No visual or olfactory evidence of hydrocarbon impacts were noted at any of the borehole locations investigated during this assessment;
- Ash was observed in fill soils in boreholes BH10M BH13M and BH15 BH17; and
- An elevated VOC concentration was observed at BH13M in sample 5.5-5.6 (64.1ppm), which were field-screened using a portable PID fitted with a 10.9 eV lamp. The PID results are shown in the borehole logs (**Appendix E**).

8.2 Groundwater Investigation Results

8.2.1Monitoring Well Construction

A total of 5 groundwater monitoring wells were installed across the site. Well construction details for the installed groundwater monitoring wells are summarised in **Table 8-2**.

Well ID	Bore Depth (m bgl)	RL (GL)	RL (TOC)	Screen Interval (m bgl)	Lithology Screened
BH1M	6.1	17.50	17.40	3.1 – 6.1	Sandstone

 Table 8-2
 Monitoring Well Construction Details

BH4M	6.0	17.00	16.90	3.0 - 6.0	Silty Clay
BH7M	6.2	15.70	15.60	3.2 - 6.2	Silty Clay/Weathered Shale
BH10M	6.1	16.17	16.07	3.1 – 6.1	Silty Clay
BH13M	6.4	18.95	18.85	3.4 - 6.4	Shale

Notes:

m bgl = metres below ground level.

RL = Reduced Level – Surveyed elevation in metres relative to Australian Height Datum (m AHD).

TOC = top of well casing .

RL (TOC) = Extrapolated elevation at TOC in m AHD from survey plans.

8.2.2Field Observations and Water Test Results

A single GME was conducted on all wells in 10 April 2018. On this date, standing water levels (SWLs) were measured within each well prior to well purging, the results of which were recorded with well purge volumes and field-based water test results. A summary of the recorded field data is presented in **Table 8-3** and copies of the completed Field Data Sheets are included in **Appendix I**.

Well ID	SWL (m BTOC)	RL (TOC)	WL⁺ (m AHD)	Purge Volume (L)	DO (mg/L)	Field pH	Field EC (µS/cm)	Temp (°C)	Redox (mV)	Odours / Turbidity
BH1M	1.40	17.40	16.00	3.0	0.59	5.75	8324	23.63	393.7	No odour/ low to moderate turbidity
BH4M	0.71	16.90	16.19	4.0	0.00	4.30	9893	24.59	443.3	No odour/ High turbidity
BH7M	1.25	15.60	14.35	2.5	0.68	5.37	10480	24.27	398.5	No odour/Low to moderate turbidity
BH10M	0.90	16.07	15.17	3.5	0.11	5.33	11870	21.05	342.8	No odour/ Moderate to high turbidity
BH13M	0.6	18.85	18.25	3.5	0.00	6.35	11910	22.20	200.56	No odour/ Moderate to high turbidity

Table 8-3 Groundwater Field Data (GME date 10 April 2018)

Notes:

GME - Groundwater monitoring event.

SWL - Standing Water Levels as measured from TOC (top of well casing) prior to groundwater sampling.

m BTOC – metres below top of well.

RL (TOC) - Reduced Level, elevation at TOC in metres relative to Australian Height Datum (m AHD).

⁺ WL = Calculated groundwater level, in m AHD (calculated as RL – SWL)

L - litres (referring to volume of water purged from the well prior to groundwater sample collection).

EC – groundwater electrical conductivity as measured onsite using portable EC meter.

μS/cm – micro Siemens per centimetre (EC units).

DO – Dissolved Oxygen in units of milligrams per litre (mg/L)

Redox - adjusted to Standard Hydrogen Electrode (SHE) by adding field electrode potential (205mV).

All groundwater parameters (pH, EC, redox and DO) were tested on site.

With reference to **Table 8-3**, the field pH data indicated that the groundwater was acidic to slightly acidic (pH ranged from 4.30 to 6.35) with reducing conditions present. Electrical Conductivity (EC) measurements were recorded in the range 8324 to 11910 μ S/cm indicating that the groundwater was saline in terms of water salinity.

8.3 Laboratory Analytical Results

8.3.1Soil Analytical Results

A summary of laboratory results showing test sample quantities, minimum/maximum analyte concentrations and samples found to exceed the SILs, is presented in **Table 8-4**. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria are presented in **Tables B.1** at the end of this report. Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in **Appendix G** and all laboratory analytical reports for tested soil samples are presented in **Appendix H**.

Table 8-4 Summary of Soil Analytical Results

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
Hydrocarbons				
28	TPH C6–C9	<20	24	None
28	TPH C10-C36	<110	830	None
28	Benzene	<0.1	<0.1	None
28	Toluene	<0.1	0.2	None
28	Ethyl benzene	<0.1	0.2	None
28	Total xylenes	<0.3	1.2	None
PAHs				
28	Carcinogenic PAHs	<0.3	3.2	None
28	Total PAH	<0.8	23	None
28	Benzo(a)pyrene	<0.1	2.3	None
28	Naphthalene	<0.1	0.5	None
OCPs				
21	Aldrin & Dieldrin	<0.1	<0.1	None
21	Chlordane	<0.1	<0.1	None
21	DDT+DDD+DDE	<0.1	<0.1	None
21	Heptachlor	<0.1	<0.1	None
OPPs				
21	Total OPPs	<1.7	<1.7	None
PCBs				
21	Total PCBs	<1.0	<1.0	None
Heavy Metal				
28	Arsenic	<3	25	None
28	Cadmium	<0.3	2.2	None
28	Chromium (Total)	4.9	62	None
28	Copper	19	280	None
28	Lead	6	480	None
28	Mercury	<0.05	0.11	None
28	Nickel	<0.5	73	None
28	Zinc	5	2200	None
Asbestos				

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
28	Asbestos	No asbestos detected	Asbestos detected	BH3_0.3-0.4, and BH10M_0.3-0.4

Heavy Metals

With reference to **Table B.1**, all heavy metals concentrations were below the corresponding health based SILs for residential settings with non-accessible soils.

TPHs

As shown in **Table B.1**, all total recoverable hydrocarbons (TRH) concentrations were below the corresponding NEPM 2013 health-based HSL-D levels, which were the adopted SILs for TPHs.

BTEX and Naphthalene

All results for BTEX compounds and naphthalene were below the corresponding SILs, as shown in **Table B.1**.

PAHs

As summarised in Table B.1 there were no exceedances of the adopted health based SILs for PAHs.

Asbestos

As summarised in Table B.1, asbestos was detected in fill at locations BH3 and BH10M.

OCPs, OPPs and PCBs

With reference to **Table B.1**, no detectable concentration of any of the screened OCP, OPP and PCB compounds was identified in any of the tested samples. All laboratory PQLs were also within the corresponding SILs.

8.3.2Groundwater Analytical Results

Laboratory analytical results for groundwater samples are summarised in **Table B.2**, which also include the adopted GILs. Completed documentation used to track groundwater sample movements and laboratory receipt (COC and SRA forms) are copied in **Appendix G**. Copies of the laboratory analytical reports are attached in **Appendix H**.

Heavy Metals

With reference to **Table B.2**concentrations in excess of the adopted GILs were identified in all samples for copper, nickel and zinc.

These metals are commonly used as a pigment in paints and as a coating on galvanised metal surfaces. It is considered therefore that the identified groundwater metal concentrations are potentially the result of long-term weathering of metal-based paints, metal coatings and metallic structures (such as suspected UPSS), but not necessarily attributable entirely to onsite contamination sources. It can be inferred that the detected groundwater metal levels do not pose an immediate threat to human health or the environment. Whether these results are treated as exceedances of the GILs, or representative of urban background groundwater conditions, the identified groundwater concentrations are not considered to represent a cause for environmental concern.

TPHs and BTEX

As shown in **Table B.2**, tested TPH and BTEX concentrations were all below the laboratory PQLs and the corresponding GILs.

PAHs and Phenols

As shown in **Table B.2**, tested PAHs and Phenol concentrations were all below the laboratory PQLs and the corresponding GILs.

SVOCs & VOCs (including Naphthalene)

As shown in **Table B.2**, the majority laboratory results for the tested groundwater samples showed non-detectable levels of *naphthalene*, SVOCs and VOCs with the laboratory detection limits well within the adopted GILs. Sample BH13-1 found concentrations of Acetone (2-propanone) above laboratory PQLs.

9.SITE CHARACTERISATION

9.1 Review of Conceptual Site Model

On the basis of investigation findings the preliminary CSM discussed in **Section 4** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. Previously known data gaps, as outlined in **Section 4.4** have largely been addressed; however, the following remaining data gaps need to be addressed in subsequent investigation works:

The location and size of the identified UST.

9.2 Asbestos Risk

Asbestos was reported in fill at two locations (BH3 and BH10M) within the site.

Excavation of test pits is the preferred method of sampling soil for asbestos impact; however, this was impractical for the assessment of the site, as this would have severely affected the amenity and integrity of the current structures.

10.Conclusions

The property located at 25 - 33 Brighton Avenue, Croydon Park NSW was the subject of a Detailed Site Investigations (DSI) that was conducted in order to assess the nature and degree of on-site contamination associated with current and former uses of the property. Based on the findings of this assessment it was concluded that:

- The site comprised a rectangular shaped block, covering a total area of approximately 1.47 hectares. The site was bound by Brighton Avenue to the west beyond which were residential and commercial properties; Residential properties to the east; Commercial properties to the north and souths;
- The site was free of statutory notices issued by the NSW EPA/DECC;
- The presence of a diesel bowser and fill points indicated a UST in the South west portion of site in the vicinity of BH7M;

- Soil sampling and analysis were conducted at twenty one (21) targeted test bore locations (BH1M BH21) down to a maximum depth of 6.4m bgl. Sampling regime was considered to be appropriate for preliminary investigation purposes and comprised judgemental and systematic (triangular grid) sampling patterns, with allowance for structural obstacles (e.g. building walls, underground and overhanging services and other physical obstructions in use by existing operating businesses);
- The sub-surface layers comprised of anthropogenic fill materials underlain by residual clays and sandstone and shale bedrock;
- Groundwater was encountered at depths ranging from 14.35 to 18.25 mAHD;
- Asbestos was reported in fill soils at locations BH3 and BH10M;
- The heavy metals copper, nickel and zinc were identified at levels above the adopted GILS in all groundwater sampling locations. It was concluded that the detected groundwater metal levels do not pose an immediate threat to human health or the environment. Whether these results are treated as exceedances of the GILs, or representative of urban background groundwater conditions, the identified groundwater concentrations are not considered to represent a cause for environmental concern.
- On review of the Preliminary Conceptual Site Model (CSM) developed as part of this DSI, it was concluded that the model remains valid for the proposed development. However, due to the absence of the majority of contaminants highlighted within the CSM, the potential risk of complete exposure pathways to exist as highlighted within the CSM, is considered to be low.

Based on the findings of this report and with consideration of the Statement of Limitations (**Section 12**), EI concludes that widespread contamination was not identified at the site. It is concluded that the site can be remediated to allow the site to be used for residential/commercial purposes as outlined in the development plan following demolition of the buildings and in accordance with a remedial action plan to address the remaining USTs and any unknown or unexpected contamination identified during the demolition and construction process.

11.RECOMMENDATIONS

The proposed development includes demolition of the existing site structures and basement excavations, therefore in view of the above findings and in accordance with the NEPM 2013 guidelines; it is considered that the site can be made suitable for the proposed development on completion of the following recommendations:

- 4. Preparation of a remedial action plan (RAP) that outlines:
 - v. Removal of the identified UST and associate infrastructure including the bowser, feed lined and vent pipes.
 - vi. Development of suitable remediation options for identified impacted fill (asbestos) and other excess soil by excavation and disposal or other appropriate method.
 - vii. Document waste classification assessment of soil earmarked for any excavation that may occur including piling waste, backfill material from excavations at the site, in accordance with the EPA (2014) Waste Classification Guidelines;

- viii. Document preliminary environmental management consideration and a preliminary validation sampling and quality plan;
- 5. Implementation of the RAP, and
- 6. Preparation of a final site validation report by a suitably qualified environmental consultant, certifying site suitability of soils and groundwater for the proposed land use.

12.STATEMENT OF LIMITATIONS

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to El's investigations and assessment.

EI's assessment is necessarily based upon the result of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. Neither EI, nor any other reputable consultant, can provide unqualified warranties nor does EI assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for the above named client and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

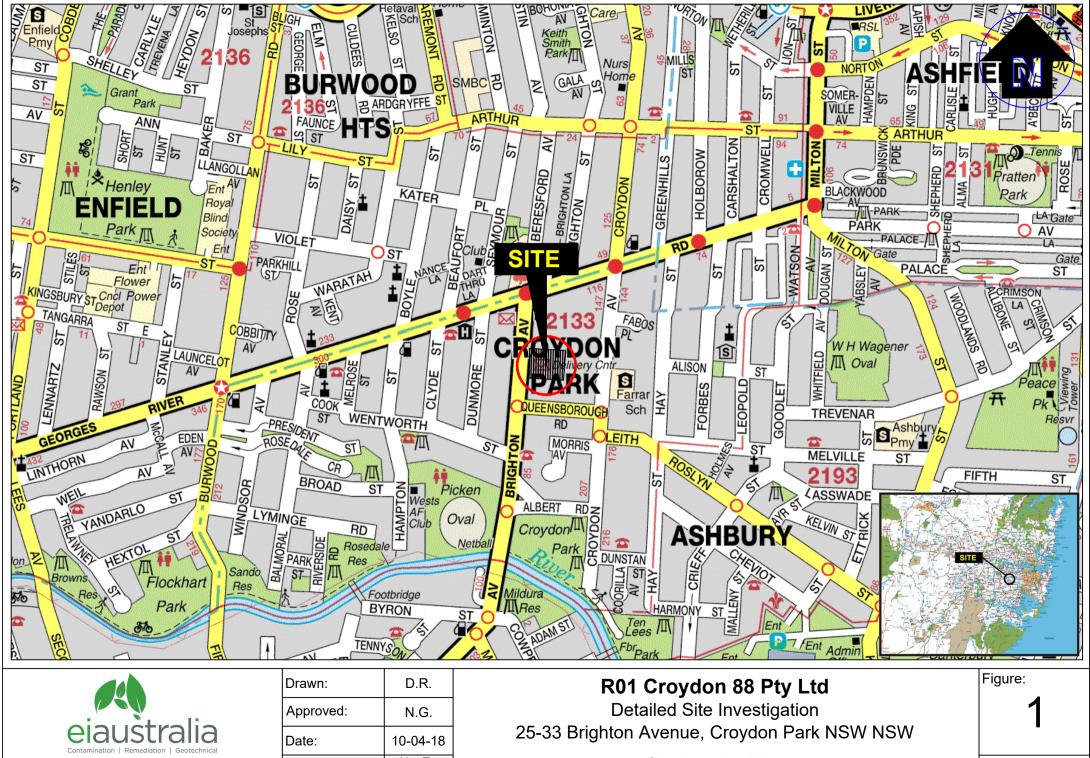
REFERENCES

ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water *Quality*, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.

- Ahern C R, Stone, Y, and Blunden B (1998) *Acid Sulfate Soils Assessment Guidelines*, part of the ASS Manual, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998, 59 p.
- Australian Standard (2005) Table E1 *Minimum sampling points required for site characterisation*, in Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.
- Bouwer, H. (1978) Groundwater Hydrology, McGraw-Hill Ryerson, Limited, 480 p.
- Chapman, G.A. and Murphy, C.L. (1989) Soil Landscapes of the Sydney 1:100 000 sheet, Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2006) Soil Investigation Levels for Urban Development Sites in NSW, in Guidelines for the NSW Site Auditor Scheme, 2nd Edn., NSW Dept. of Environment and Conservation, DEC 2006/121, April 2006.
- DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DECCW (2009) *Waste Classification Guidelines, Department of Environment*, Climate Change and Water, New South Wales, DECCW 2009/806, December 2009.
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) *Geological Survey of New South Wales*, Department of Mineral Resources.
- El (2016) Preliminary Site Investigation, 15 33 Brighton Avenue, Croydon Park NSW (Ref. E22142 AA_Rev0, dated 26 May 2016)
- EPA (2014) Technical Note: Investigation of Service Station Site Environment Protection Authority of New South Wales, EPA 2014/0315, April 2014.
- EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- McWhorter, D.B. and Sunada, D.K., (1977) *Ground-water Hydrology and Hydraulics, Water Resources Publications*, LLC. 304p.
- Merrick, N. P. (1994) A groundwater flow model of the Botany Basin, IAH/IEA Water Down Under '94 Conference, Adelaide, 21-25 Nov., Proceedings Vol. 2A, 113-118.
- Murphy CL (1997) Acid Sulfate Soil Risk of the Botany Bay Sheet Department of Land and Water Conservation, Sydney, Second Edition. Supplied by the Sydney South Coast, Geographical Information Systems Unit.
- Naylor SD, Chapman GA, Atkinson G, Murphy CL, Tulau MJ, Flewin TC, Milford HB and Morand DT (1998) *Guidelines for the Use of Acid Sulfate Soil Risk Maps*, Department of Land and Water Conservation, Sydney, Second Edition.
- NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.

- OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p
- USEPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.
- WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. Published by the Western Australian Department of Health, May 2009.
- WHO (1996) Guidelines for Drinking Water Quality, World Health Organisation, 1996.

ABBREVIATIONS


ACM	Asbestos-containing materials
ASS	Acid sulfate soils
ANZECC	Australian and New Zealand Environment Conservation Council
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand
B(a)P	Benzo(a)Pyrene (a PAH compound), - B(a)P TEQ Toxicity Equivalent Quotient
BH	Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
COC	Chain of Custody
cVOCs	Chlorinated Volatile Organic Compounds (a sub-set of the VOC analysis suite)
DEC	Department of Environment and Conservation, NSW (see OEH)
DECC	Department of Environment and Climate Change, NSW (see OEH)
DECCW	Department of Environment, Climate Change and Water, NSW (see OEH)
DLCCW	Development Application
DO	Dissolved Oxygen
DD DP	Deposited Plan
EC	Electrical Conductivity
EC	
	Redox potential
EPA	Environment Protection Authority
EMP	Environmental Management Plan
F1 F2	TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1)
	TRH > $C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013, Schedule B1)
GIL GME	Groundwater Investigation Level
	Groundwater Monitoring Event
HIL	Health-based Investigation Level
HSL	Health-based Screening Level
km	Kilometres
	Light, non-aqueous phase liquid (also referred to as PSH)
DNAPL	Dense, non-aqueous phase liquid
EIL	Ecological Investigation Level
ESL	Ecological Screening Level
m m	Metres
m AHD	Metres Australian Height Datum
m BGL	Metres Below Ground Level
mg/m ³	Milligrams per cubic metre
mg/L	Milligrams per litre
µg/L	Micrograms per litre
mV	Millivolts
MW	Monitoring well
NATA	National Association of Testing Authorities, Australia
NEPC	National Environmental Protection Council
NSW	New South Wales
OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)
PAHs	Polycyclic Aromatic Hydrocarbons
pН	Measure of the acidity or basicity of an aqueous solution
PSH	Phase-separated hydrocarbons (also referred to as LNAPL)
PQL	Practical Quantitation Limit (limit of detection for respective laboratory instruments)
QA/QC	Quality Assurance / Quality Control
RAP	Remediation Action Plan
SRA	Sample receipt advice (document confirming laboratory receipt of samples)
SWL	Standing Water Level
TDS	Total dissolved solids (a measure of water salinity)
	Toxicity Characteristics Leaching Procedure
TPH TDU	Total Petroleum Hydrocarbons (superseded term equivalent to TRH)
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)

- UCL Upper Confidence Limit of the mean
- USEPA United States Environmental Protection Agency
- UPSS Underground Petroleum Storage System
- UST Underground Storage Tank
- VOCs Volatile Organic Compounds (specific organic compounds which are volatile)

Appendix A- Figures

Suite 6.01, 55 Miller Street, PYRMONT 2009 Ph (02) 9516 0722 Fax (02) 9518 5088

Approved:	N.G.
Date:	10-04-18
Scale:	Not To Scale

Site Locality Plan

Project: E23775.E02 Rev

LEGEND

– – – Approximate site boundary

- Approximate borehole/monitoring well location
- Approximate borehole location

Drawn:	D.R.	R01 (
Approved:	N.G.	Deta 25-33 Brighto
Date:	10-04-18	Sar

Croydon 88 Pty Ltd ailed Site Investigation on Avenue, Croydon Park NSW

ampling Location Plan

Figure:

2

Project: E23775.E02_Rev0

Appendix B- Tables

Table B.1 - Summary of Soil Analytical results

						Heavy	Metals					P	AHs			В	тех				т	RH			Pes	licides	PCBs	Asbestos
Sample ID	Material	Date	As	Cd	Cr	Cu	РЬ	Hg	Ni	Zn	Carcinogenic PAHs (as Β(α)Ρ ΤΕΩ)	Benzo(a)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	C ⁶ -C ⁹	C ¹⁰ -C ³⁶	OCPs (total)	Opps	Total	Presence / absence
BH1M_0.2-0.3	Fill		10	< 0.3	14	13	17	< 0.05	1.5	15	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH1M_0.8-0.9	Natural		4	< 0.3	5.6	22	10	< 0.05	1.3	13	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	NA	NA	<1	NA
BH2_0.2-0.3	Fill		9	<0.3	17	56	140	0.07	18	2200	3.2	2.3	23	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	120	<120	<20	120	<1	<1.7	<1	No
BH3_0.3-0.4	Fill		4	<0.3	62	25	21	<0.05	57	340	0.9	0.6	6.9	0.1	<0.1	<0.1	0.2	1.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	Yes
BH4M 0.2-0.3	Fill	1	8	0.3	11	18	260	< 0.05	5.9	140	0.9	0.0	2.2	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH4M_0.2-0.3 BH5_0.3-0.4	Fill	1	9	<0.3	22	23	67	0.05	5.9	87	0.3	0.2	5.6	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90 94	<120	<20	<110	<1	<1.7	<1	No
BH5_0.3-0.4 BH6_0.2-0.3	Fill	1	9 10	<0.3	13	23	87	<0.05	5.1	69	0.3	0.6	1.3	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	94 <90	<120	<20	<110	<1	<1.7	<1	No
		10/02/2019	7							-			-	-		-	-								-			
BH7M_0.2-0.3 BH7M 1.4-1.5	Fill	19/03/2018		<0.3	10	13	34	< 0.05	3.1	31	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
_	Natural		8	<0.3	4.4	17	11	< 0.05	0.7	15	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	NA	NA	NA	NA
BH8_0.3-0.4	Fill		8	<0.3	9.1	21	430	< 0.05	2.7	280	0.4	0.2	2.2	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH9_0.3-0.4	Fill		7	<0.3	18	17	25	< 0.05	16	120	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH10M_0.3-0.4	Fill		25	2.2	6.4	280	480	0.11	8.4	850	0.5	0.3	3.4	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	760	<120	<20	830	<1	<1.7	<1	Yes
BH10M_0.9-1.0	Natural		8	<0.3	6.3	26	11	< 0.05	< 0.5	5	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	NA	NA	NA	NA
BH11_0.3-0.4	Fill		5	<0.3	12	79	6	< 0.05	73	62	<0.3	0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH12_0.5-0.6	Fill		13	<0.3	4.9	20	16	< 0.05	0.7	9.1	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH13M_0.3-0.4	Fill		4	<0.3	11	18	24	< 0.05	14	80	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH13M_0.9-1.0	Fill		8	< 0.3	4.3	24	23	< 0.05	< 0.5	12	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	NA	NA	NA	NA
BH13M_5.5-5.6	Natural		6	<0.3	10	53	24	< 0.05	26	120	<0.3	<0.1	3.8	0.5	<0.1	0.2	0.1	1.2	36	59	<90	<120	24	110	NA	NA	NA	NA
BH14_0.4-0.5	Natural		6	< 0.3	17	25	18	< 0.05	7.1	23	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH15_0.3-0.4	Fill		8	<0.3	27	29	43	< 0.05	23	130	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH16_0.4-0.5	Fill		5	< 0.3	15	54	32	< 0.05	14	64	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH17_0.5-0.6	Fill	20/03/2018	6	< 0.3	23	22	27	< 0.05	20	51	< 0.3	<0.1	< 0.8	<0.1	<0.1	< 0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH17_1.0-1.1	Fill		5	< 0.3	22	21	10	< 0.05	19	33	< 0.3	<0.1	< 0.8	<0.1	<0.1	< 0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	NA	NA	NA	NA
BH17_11.6	Natural		5	< 0.3	5.8	25	7	< 0.05	0.6	8.1	< 0.3	<0.1	< 0.8	<0.1	<0.1	< 0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	NA	NA	NA	NA
BH18_0.5-0.6	Natural	1	5	< 0.3	5.8	23	12	< 0.05	1.3	22	< 0.3	<0.1	< 0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH19_0.5-0.6	Fill	1	<3	< 0.3	6.9	2.8	13	< 0.05	< 0.5	13	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH20_0.4-0.5	Fill	1	3	< 0.3	6.5	1.9	16	< 0.05	1.9	31	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH21_0.4-0.5	Fill	1	4	< 0.3	7.5	4.5	18	< 0.05	1.4	19	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
_		1						1			Statistical An		1		· · ·								<u> </u>				n	
Maximum C	oncentration		25	2.2	62	280	480	0.11	73	2200	3.2	2.3	23	0.5	<0.1	< 0.1	<0.1	< 0.3	<25	<25	760	<120	<20	830	0	<1.7	<1	No
											SILs														-			
HIL B - Residential with minimal of	oportunities for garden soil ac	cess.	500	150	500 Cr(VI)	30000	1200	120	1200	60000	4		400												600		1	
				-		•	Source de	epths (0 m to	<1 m. BGL)	-	-			NL	3	NL	NL	230	260	NL								
HSL D - Comme	ercial / Industrial						Source de	epths (1 m to	<2 m. BGL)					NL	3	NL	NL	NL	370	NL								
Soil texture class								epths (2m to -						NL	3	NL	NL	NL	630	NL								J
								urce depths (4	-					NL	3	NL	NL	NL	NL	NL								
Management Limits – Residentia Coarse graine		pace															•		700	1000	3500	10000						
Asbestos contamination Bonded AG	HSL – A&B Residential																		1	1	1		- Losson and					0.01
Asbestos contamination HSL for No	n Bonded / Friable Asbestos	(%w/w)																										0.001

Notes: All results are recorded in mg/kg (unless otherwise stated)

Highlighted values indicates concentration exceeds Human Health Based Soil Criteria

Highlighted indicates soil criteria exceeded NEPC 1999 Amendment 2013 'HIL B' Health Based Investigation Levels applicable for residential exposure settings with minimal opportunities for garden soil access. HIL B NEPC 1999 Amendment 2013 'HSL C' Health Based Screening Levels based on vapour intrusion values applicable for recreational open space settings. HSL C HSL D NEPC 1999 Amendment 2013 'HSL D' Health Based Screening Levels based on vapour intrusion values applicable for commercial / industrial settings. Site specific EIL criteria / Conservative ESL criteria (See Section 7.3) NA 'Not Analysed' i.e. the sample was not analysed. NC Not Calculated' ND 'Not detected' i.e. all concentrations of the compounds within the analyte group were found to be below the laboratory limits of detection. NL 'Not Limiting' - The soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical. NR No current published criterion. Coarse Grained soil values were applied, being the most conservative of the material types. 1 Combined total of which all Chlordane speciations are assessed against. 2 NSW EPA (2014) CT1 General Solid Waste Thresholds (without leachate test), in Waste Classification Guidelines, Table 1. 3 NSW EPA (2014) CT2 Restricted Solid Waste Thresholds (without leachate test), in Waste Classification Guidelines, Table 1. 4 NSW EPA 2014 TCLP1/SCC1 Maximum values for Leachable concentration and specific contaminant concentration for General Solid Waste Thresholds, Waste Classification Guidelines Table 2. 5 NSW EPA (2014) TCLP2/SCC2 Maximum values for Leachable concentration and specific contaminant concentration for Restricted Solid Waste Thresholds, Waste Classification Guidelines Table 2. 6 F1 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction. F2 To obtain F2 subtract Naphthalene from the >C10-C16 fraction. F3 (>C16-C34) F4 (>C34-C40)

E23775_Dyldam_Croydon Park

Table B.2 – Summary of Groundwater Investigation Results

				Heavy I	Vetals					BT	ΈX			TR	Hs		P	AH		V	OCs
Sample ID	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Benzene	Toluene	Ethylbenzene	Total Xylene	F1*	F2**	F3 (>C ₁₆ -C ₃₄)	F4 (>C ₃₄ -C ₄₀)	Naphthalene	Other PAHs	Totatl Phenols	Total VOCs	Acetone (2-propanone)
BH1M-1	<1	1	2	32	2	<0.1	120	600	<0.5	<0.5	<0.5	<1.5	<50	<60	<500	<500	<0.1	<1	< 0.01	<10	<10
BH4M-1	<1	<0.1	1	60	4	<0.1	73	280	<0.5	<0.5	<0.5	<1.6	<50	<60	<500	<500	<0.2	<2	<0.02	<10	<10
BH7M-1	<1	0.6	3	53	4	<0.1	170	900	<0.5	<0.5	<0.5	<1.7	<50	<60	<500	<500	<0.3	<3	<0.03	<10	<10
BH10M-1	<1	0.9	2	54	4	<0.1	67	290	<0.5	<0.5	<0.5	<1.8	<50	<60	<500	<500	<0.4	<4	<0.04	<10	<10
BH13M-1	1	<0.1	1	25	2	<0.1	47	84	<0.5	<0.5	<0.5	<1.5	<50	<60	<500	<500	<0.1	<1	<0.01	28	24
										GIL											
GIL (MarineWaters)	NR	0.7 ³	27 (Cr (III)) 4.4 (Cr (VI))	. 1.3	4.4	0.1 ³	7	15 ¹	500 ¹	NR	NR	NR	NR	NR	NR	NR	50	NR	400	l	NR
Drinking Waters		2	50	2000	10	1	20	NR	1	800	300	600	NR	NR	NR	NR	0.01	NR	NR		
HSL D ²	NR	NR	NR	NR	NR	NR	NR	NR	5000	NL	NL	NL	6000	NL			NL				
Notes: GIL	Highligh Ground	nted con-	ι units of μ centration vestigation	value ind Level. A	All GIL v	alues so	urced fro	om <i>Natic</i>	onal Envi												
HSL	typical s	slightly-n	13, Sched noderately creening L	disturbe			ivestigat	ion Leve	els for So	oil and G	roundwa	ter, (NE	PC) Inve	stigatior	ı levels a	ipply to F	Fresh W	aters for			
NL	'Not Lim chemica	niting' If t al, i.e. wl	the derived	d soil vap bil vapou	ir is at e	quilibrium	n with the	e pore w	ater, the	n the so	il vapour	source			,						
NR			ed soil ass							•		. ,									
N.D. *			of all teste btract the s			• •				•	uantifatio	on limit.									

- To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
 To obtain F2 subtract Naphthalene from the >C10-C16 fraction.
- To obtain 12 subtract requiring from the 2010-010 fraction.
- 1 Indicated threshold value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance.
- 2 NEPC (2013) Table 1A(4) Groundwater HSL D for vapour intrusion at the contaminant source depth ranges in sands 2m to <4m, which is consistent with the groundwater sampling depth.
- 3 Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZECC & ARMCANZ (2000) for further guidance.

Table B.3 Summary of QA/QC Results for Soil Validation Samples

Site: 25 - 33 Brighton Avenue, Croydon Park NSW

Job No: E23775.E02

				TI	RH			BT	ΈX					Heavy	Metals			
Date	Sample Identification	Description	F1	F2	F3	F4	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laborato	ory Duplicate																	
20/03/2018	BH8_0.3-0.4	Primary Soil Sample	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	8	<0.3	9.1	21	430	< 0.05	2.7	280
20/03/2018	QD1	Intra-laboratory duplicate of BH8_0.3-0.4	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	6	<0.3	8.2	13	320	< 0.05	2.9	190
		RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.57	0.00	10.40	47.06	29.33	0.00	7.14	38.30
Inter-laborato	ory Duplicate																	
20/03/2018	BH8_0.3-0.4	Primary Soil Sample	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	8	<0.3	9.1	21	430	< 0.05	2.7	280
20/03/2018	QT1	Inter-laboratory duplicate of BH8_0.3-0.4	<25	<50	<100	<100	< 0.2	< 0.5	<1	<3	<1	1.1	1	14	<1	< 0.05	120	590
		RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	160.40	40.00	199.30	0.00	191.20	71.26
Trip Blanks																		
20/03/2018	Trip Blank	Soil	-	-	-	-	<0.1	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-
Trip Spikes																		
20/03/2018	Trip Spike	Soil	-	-	-	-	[83%]	[84%]	[84%]	[88%]	-	-	-	-	-	-	-	-
Rinsate Blan				-	-								-	-				
20/03/2018	QR1	De-ionised water	<50	<60	<500	<500	< 0.5	<0.5	<0.5	<1.5	<1	<0.1	2	40	3	<0.1	3	110
20/03/2018	QRB1	De-ionised water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	1	<1	<1	<0.1	<1	<5

52.17 Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit.

82.35 RPD exceeds 30-50% range referenced from AS4482.1 (2005)

NOTE: All soil results are reported in mg/kg. All water results are reported in µg/L.

F1 = TRH C6-C10 less the sum of BTEX

F2 = TRH >C10-C16 less naphthalene

F3 = TRH >C16-C34

F4 = TRH >C34-C40

Table B.3 Summary of QA/QC Results for Groundwater Samples

Site: 25 - 33 Brighton Avenue, Croydon Park NSW

Job No: E23775.E02

				TF	RH			BT	ΓEX					Heavy	Metals			
Date	Sample Identification	Description	F1	F2	F3	F4	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laborate	ory Duplicate																	
10/04/2018	BH1M-1	Primary Water Sample	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	1	2	32	2	<0.1	120	600
10/04/2018	GWQD1	Intra-laboratory duplicate of BH1M-1	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	1	1	17	<1	<0.1	110	580
		RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	66.67	61.22	80.00	0.00	8.70	3.39
Inter-laborate	ory Duplicate																	
10/04/2018	BH1M-1	Primary Water Sample	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	1	2	32	2	<0.1	120	600
10/04/2018	GWQT1	Inter-laboratory duplicate of BH1M-1	<10	<50	<100	<100	<1	<1	<1	<3	<1	1.1	1	14	<1	<0.05	120	590
		RPD	0.00	0.00	0.00	0.00	0.00	NA	0.00	0.00	0.00	9.52	66.67	78.26	80.00	0.00	0.00	1.68
Trip Blanks																		
10/04/2018	Trip Blank	Water	-	-	-	-	<0.5	<0.5	<0.5	<1.5	-	-	-	-	-	-	-	-
Trip Spikes									-									
10/04/2018	Trip Spike	Water	-	-	-	-	100%	105%	98%	98%	-	-	-	-	-	-	-	-
Rinsate Blan																		
10/04/2018	GWQR1	De-ionised water	<50	<60	<500	<500	< 0.5	<0.5	< 0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	63

52.17 Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit.

82.35 RPD exceeds 30-50% range referenced from AS4482.1 (2005)

F1 = TRH C6-C10 less the sum of BTEX

F2 = TRH >C10-C16 less naphthalene

F3 = TRH >C16-C34

F2 = TRH >C34-C40

Appendix C– Development Plans

Brighton Avenue Croydon Park

For Dyldam Pty Ltd, April 2016

Prepared for: Dyldam

ae design partnership architecture urban design planning

Urban Design Strategy & Preferred Design Option

LO Intro

1.2 Ob 2.0 Ana 2.1 Loc 2.2 Site 2.3 Plan

3.0 Urt

4.0 Pro

4.1 An

<u>5.0 Sol</u>

5.1 Mie

5.2 Sun Hours Diagram

AE Design Partnership has prepared t document for the sole use of Dyldam.

No other party should rely on this document without the prior written consent of AE Design Partnership.

AE Design Partnership may also have relied upon information provided by Dyldam and other third parties to prepare this document.

AE DESIGN PARTNERSH ABN 85 162 968 103 Nominated Architect Director N R Dickson # 7061

23 Barr Street Camperdown Sydney NSW 2 Australia t +61 2 9519 4994 m +61 419 245 956 mail@aedesignstuctio.com.au

ae design partnership architecture urban design planning

Contents

roduction	3
ecutive Summary	3
Djectives	3
halysis	5
cal Context	5
e Context	6
\times	
nning Context	7
ban Design Strategy	9
	///
oposed Building Envelopes	X / /
ea Calculations	15
lar Study	
d-Winter Shadow Diagrams	
n Hours Diagram	18

I.0 Introduction

I.I Executive Summary

This Urban Design Report has been prepared by AE Design Partnership on behalf of Dyldam Pty Ltd. The subject site is located at 27-33 Brighton Avenue Croydon Park (the Site).

The Site is located within Canterbury Local Government Area. The Site is located in a predominantly residential area near corner two arterial roads Brighton Avenue and Georges River Road.

This Report includes a brief analysis of the Site and its context. AE Design Partnership's task is to demonstrate the best built form outcome for the Site taking into account the existing and the proposed controls and to determine any further changes to the controls that are warranted. AE Design Partnership has developed an urban design strategy for the Site in regards to its built form, open space, amenity, public domain, access and streetscape character.

The proposed design option is documented with a set of 2D and 3D envelopes for the subject Site. Additionally, lots located immediately north of the Site 15, 17, 19, 21 and 23-25 Brighton Avenue Croydon Park are included for the purpose of building envelope testing.

The Report also includes indicative floor plans to demonstrate functioning of the proposed building envelopes and the internal residential arrangement with regards to primary controls from the State Environmental Planning Policy 65 Apartment Design Guide.

I.2 Objectives

The objectives for this project are to:

- Analyse the Site, its immediate and local context to understand the built form, open space and public domain aspects of the area;
- Formulate urban design strategy for the Site;
- Provide development options derived using the previously formulated design strategy;
- Compare all development options in terms of height of buildings, floor space ratio, gross floor area, solar access performance and indicative number of apartments;
- Present the Urban Design Strategy and the Preferred Design Option to Council (5 storey building envelopes);
- Collate Council feedback; and
- Summarise all of the above including building envelopes and indicative floor plans, as the basis for a Planning Proposal to be submitted to Council.

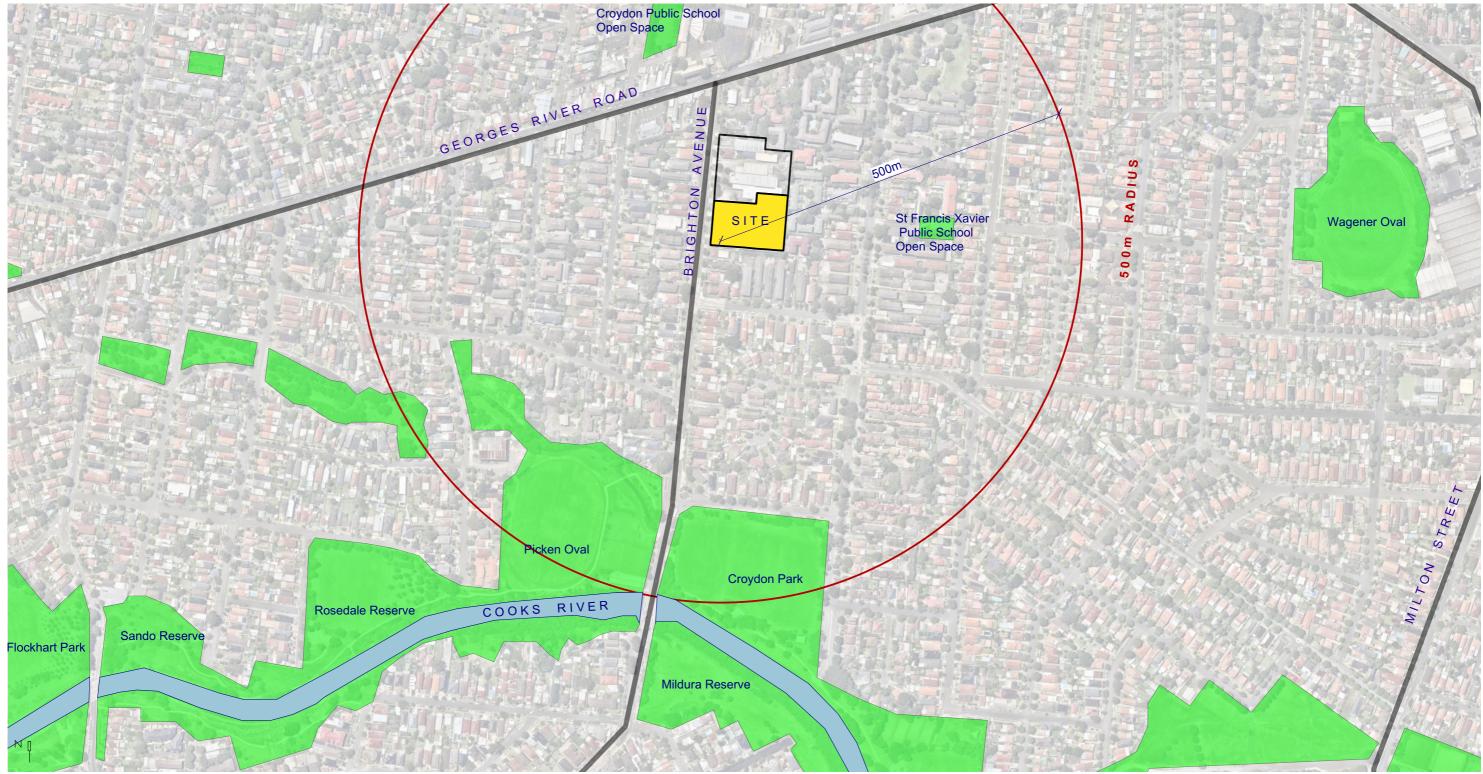
Street view of the Site No. 27-33 Brighton Avenue and the adjacent site No. 15-25 Brighton Avenue (northern site).

Cooks River and surrounding parklands located 500m from the Site.

Brighton Avenue is a 30m wide street with a single travel + a parking lane in each direction. A bicycle lane is has been provided within the parking lane. The 30m width also accommodates a large median and wide footpaths on both sides of the street.

A mix of I-2 storey detached houses and 3 storey residential flat buildings located across the Site on Brighton Avenue.

Footpaths on both sides of Brighton Avenue are approximately 7m wide, adjacent to a 3.3m wide parking lane and a 3.5m travel lane. The central median is within the variable residual street width.



Croydon Public School and Croydon Park shops located at the corner of Brighton Avenue and Georges River Road, approximately 70m from the Site.

2.0 Analysis

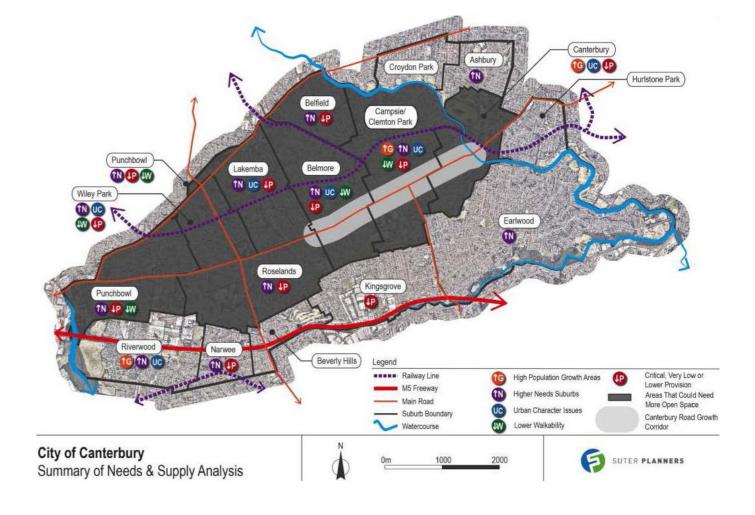
2.1 Local Context

The Site is located near corner of two arterial roads Brighton Avenue and Georges River Road. Brighton Avenue connects the Site to Cooks River and the surrounding parklands (Croydon Park, Picken Oval and Mildura Reserve) located within a 500m walking radius from the Site. Brighton Avenue is an arterial road which connects the Site with Campsie, Clemton Park, Bexley, and further with M5 South Western Motorway and Princes Highway towards south. Georges River Road is also an arterial road which connects Croydon Park with Burwood, Enfield, Strathfield, Lakemba, Punchbowl, and further with M5 South Western Motorway towards west. Georges River Road connects with City West Link via Ashfield Haberfield towards east.

Brighton Avenue Croydon Park Urban Design Strategy & Design Option

Suburb Provision Analysis Considers Benchmarks and Industry Thinking Does not consider potential additional open space being provided (e.g. linked to population growth or to address gaps)

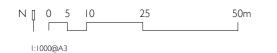
	Provision	Suburb Land		Hecta	res Per 1,000 P	People	OVERALL PROVISION FINDING
Suburb	(Hectares)	Area Hectares	% of Land Area	2011 144,709	2021 161,508	2031 181,459	
ASHBURY	12.4	98	12.7%	3.75	3.74	3.33	GOOD PROVISION
BELFIELD	7.4	119	6.2%	1.50	1.44	1.28	LOWER PROVISION
BELMORE	11.9	282	4.2%		0.84	0.74	VERY LOW PROVISION
BEVERLY HILLS	19.8	84	23.6%	11.59	10.80	9.62	LOWER WITHOUT GOLF COURSE *
CAMPSIE-CLEMTON PARK	13.3	366	3.6%	0.56	0.45	0.40	CRITICALLY LOW
CANTERBURY	22.7	197	11.5%	3.51	2.12	1.89	LOWER AS POPULATION GROWS
CROYDON PARK	12.9	95	13.6%	2.86	2.78	2.47	RELATIVELY GOOD
EARLWOOD	103.3	562	18.4%	5.83	5.60	4.99	GOOD PROVISION
HURLSTONE PARK	11.4	106	10.8%	2.63	2.49	2.21	RELATIVELY GOOD
KINGSGROVE	12.6	226	5.6%	2.03	2.00	1.78	LOWER PROVISION
LAKEMBA	12.9	218	5.9%	0.79	0.76	0.68	VERY LOW PROVISION
NARWEE	6.7	86	7.8%	1.97	1.84	1.64	LOWER PROVISION
PUNCHBOWL	17.4	263	6.6%	1.49	1.38	1.23	LOWER PROVISION
RIVERWOOD	60.3	243	24.8%	11.33	8.57	7.63	GOOD PROVISION
ROSELANDS	5.2	274	1.9%		0.42		CRITICALLY LOW PROVISION
WILEY PARK	9.2	136	6.8%	0.92	0.90	0.80	VERY LOW PROVISION
CANTERBURY LGA	341.3	3355	10.2%	2.36	2.11	1.88	LOWER PROVISION IN FUTURE


*Note that without the golf course the provision in Beverly Hills is only 2.6 hectares (which represents 1.52 hectares per 1,000 in 2011 and 1.26 hectares per 1,000 people in 2031)

Provision Analysis	Ha/1,000	Land Area	Colour Code
Good Provision	More than 3ha/1000	More than 12.5%	
Relatively Good Provision	2-3 ha per 1,000	10-12%	
Lower Provision	1-2 ha per 1,000	5-9%	
Very Low Provision	0.5 – 1 ha per 1,000	2-4.9%	
Critically Low Provision	Less than 0.5 ha /1,000	Less than 2%	

An excerpt from City of Canterbury's Open Space Review (July 2015) endorsed by the Council

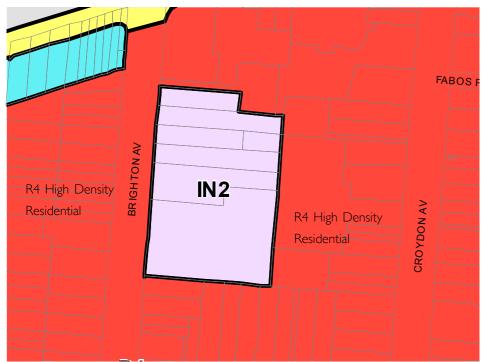
An excerpt from City of Canterbury's Open Space Review (July 2015) - Croydon Park excluded from the areas that could need more open space. The areas requiring more open space are shown in dark grey.

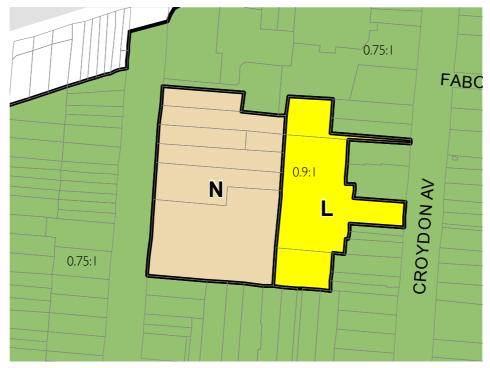


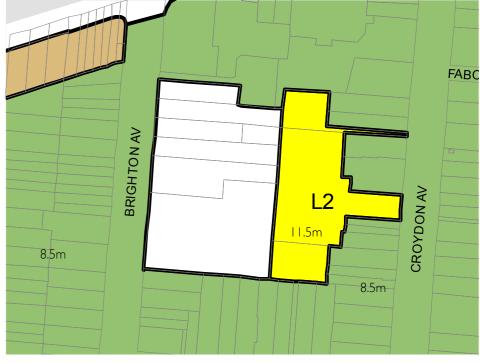
ΝĮ

2.2 Site Context

- The Site is located in a predominantly residential area. The subject site and lots located to its north are isolated industrial lots surrounded by R4 High Density Residential zoning.
- There are 3 to 4 storey residential flat buildings located east and south of the Site.
- The area west of Site across Brighton Avenue predominantly includes 1-2 storey detached houses.
- Croydon Park retail strip, Croydon Park Public School and Uniting Church buildings are located at the corner of Brighton Avenue and Georges River Road, 70m north of Site.
- The Site has a 61.5m frontage to Brighton Avenue and 102m depth. The site area is approximately 6,770m²


 ${f ae}$ design partnership


Planning Context 2.3


- The Site (including the northern site) is currently zoned in isolation as IN2 Light Industrial, whilst surrounded by R4 High Density Residential zone.
- A floor space ratio of 0.9:1 with a building height limit of 11.5 applies to the lots located along east and 0.75:1 with a building height limit of 8.5m applies to the remaining area.
- The site does not contain any heritage listed items and is not located within a Heritage Conservation Area.

2013.

Zone

Νſ

FSR

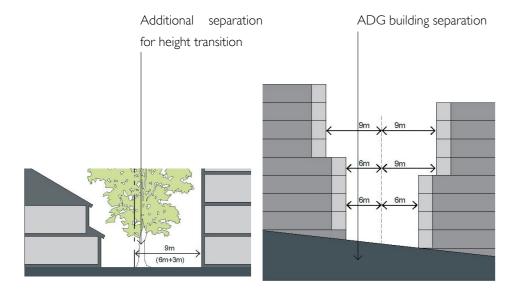
HoB

An exerpt from a previously lodged Planning Proposal for the Site to change the zone to R4 High Density, increase building height limit to 26m and increase FSR to 2.5:1, August

URBAN DESIGN STRATEGY

ae design partnership architecture urban design planning

3.0 Urban Design Strategy


Building Envelopes

- The proposed building envelopes to have a maximum depth of 17m between glass line, consistent with the Apartment Design Guidelines.
- Maximum length of 45m is to apply to building envelopes addressing Brighton Avenue.
- Building envelopes should to be aligned to have a north-south orientation increasing direct solar access to the street and courtyard. A north-south building orientation will generate faster moving shadows and hence reduce the extent of overshadowing hours.
- A desirable building separation, as per SEPP 65 Apartment Design Guide Building • Separation is to be provided to allow adequate sunlight and natural ventilation between buildings.
- · The in-between courtyard spaces are to be provided with an acceptable level of residential amenity including visual and acoustic privacy, daylight access and a desirable outlook for buildings with internal address.
- Building separation to be increased by an additional 3m along the eastern and southern boundaries to create building height transition. (The buildings adjacent to east and south of the Site are 2 to 3 storeys. These sites are currently zoned as R4 High Density Residential).

- - to the street and courtyard.

Building Height

Building Separation

Street Connectivity

• A 3m street setback is to be provided from Brighton Avenue. This setback will be consistent with the existing residential flat buildings along Brighton Avenue.

• The pedestrian entry to the foyer should be clearly defined.

• Most apartments should address Brighton Avenue and improve casual street surveillance, whilst having a north-south orientation and allowing direct solar access in

• Ground floor apartments to have direct street access.

A building height of 5 storeys is considered for the purpose of building envelope testing.

Pedestrian Entry to the Foyer

Direct access for ground floor apartments

Site Layout Configurations

The following options were explored in terms of site layout.

The urban design strategies formed during previous stage are applied to these options.

Option 4 is further used for the purpose of building envelope testing since it has the best outcome in terms of building massing, building separation (internal and with the adjacent sites), solar access and open space location.

PROPOSED BUILDING EN

ae design partnership architecture urban design planning

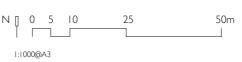
ELOPES

4.0 Proposed Building Envelopes

FSR	1.86 :
Height of Buildings	5 storeys
	1

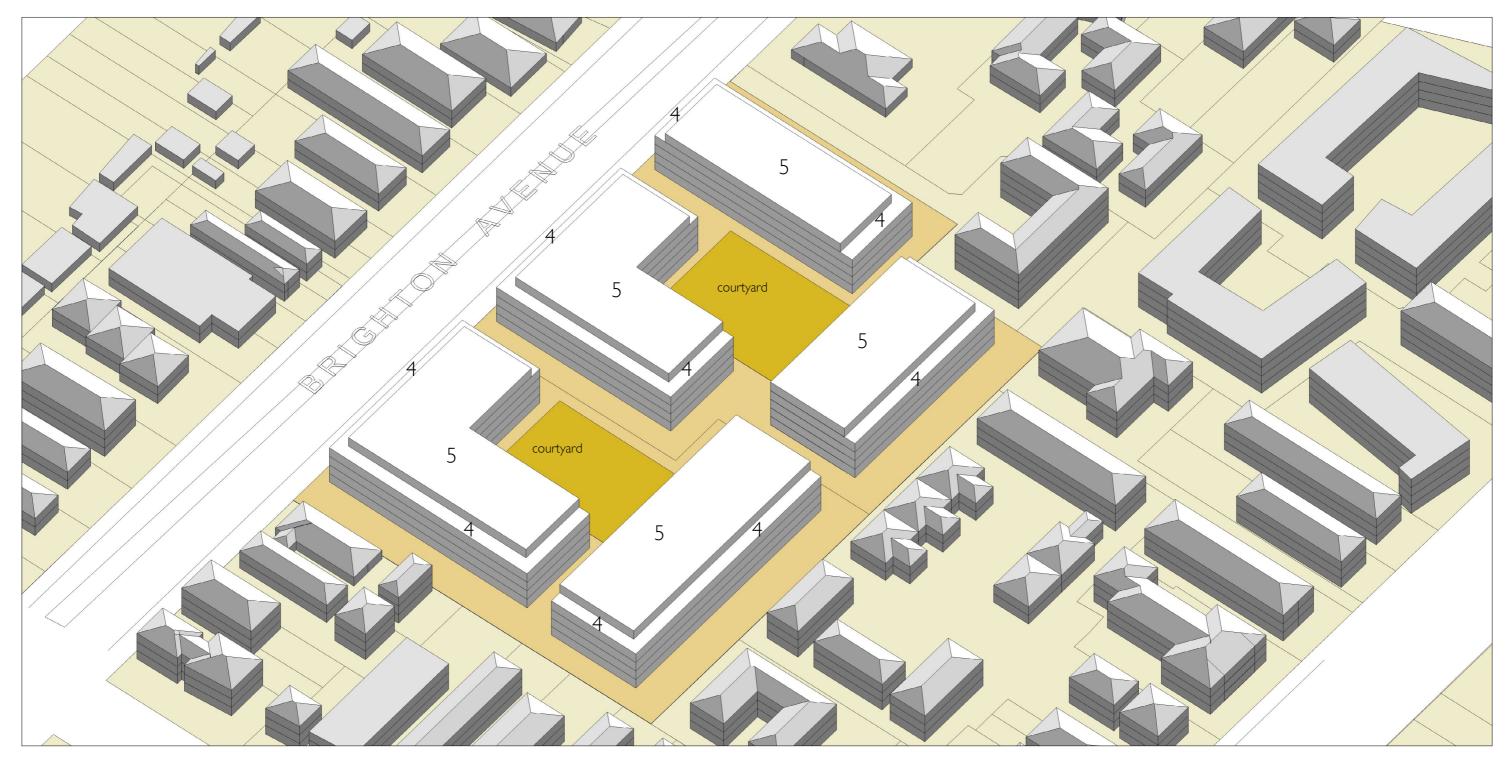
The 2D building envelope plan shows the proposed envelopes with the existing 3 storey residential flat buildings to east and south of the Site. Additionally, neighbouring lots located immediately north of the Site 15-25 Brighton Avenue Croydon Park are included in this scheme.

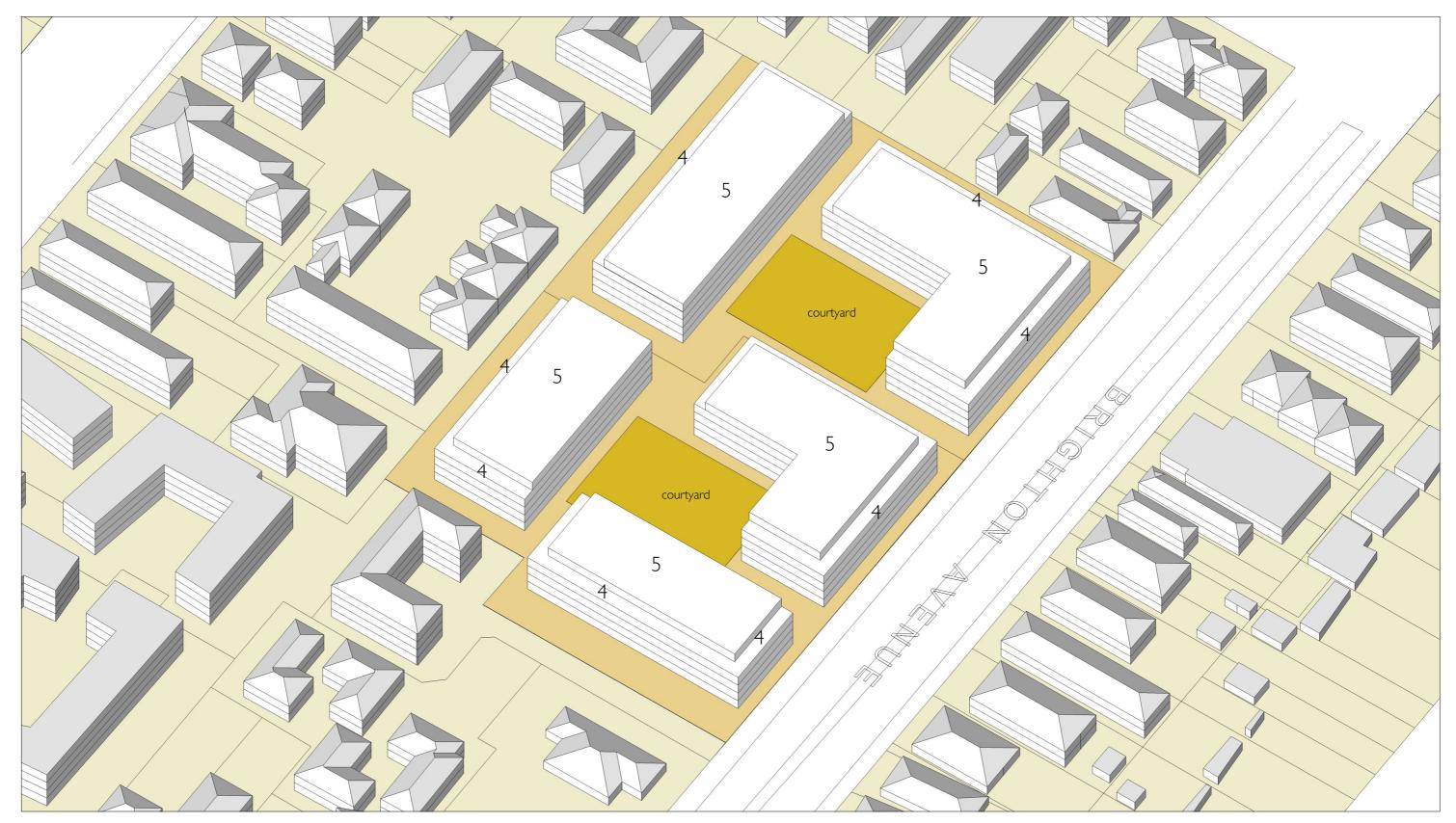
Our local context analysis (see 2.0 Analysis) shows the Cooks River and the adjacent parklands such as Croydon Park, Picken Oval and Mildura Reserve are located within a 500m walking radius from the Site. These parklands serve as recreational spaces for local residents. Croydon Park currently has a Good Provision of open space as per Canterbury Council's Open Space Needs Review (dated July 2015) endorsed by the Council. Therefore, a publicly accessible open space as recommended by the Department of Planning's Gateway Determination (September 2015) is not required to be provided on the Site.


Our building envelope testing suggests a height range of 5 storeys (shown in dark grey) reaches a floor space ratio of 1.86 : I for the subject Site and the northern site.

The 5 storey envelopes have an additional 3m upper setback to minimise visual impact when viewed from the neighbouring residential sites on east and west. The pink envelopes are 4 storey in height and are proposed with an additional 3m (6 + 3m) building separation to create a height transition to the existing 3 storey residential flat buildings to east and south.

A central courtyard (43 X 31m) is proposed to achieve an acceptable level of residential amenity including daylight, ventilation, visual and acoustic privacy. The courtyard will create a desirable outlook for the courtyard building which will have apartments with internal address.


The building envelope areas are reduced to 80% to calculate the residential GFA (gross floor area) for FSR calculations. 80% reduction allows for deducting building articulation, balconies, lift shafts, fire egress, stairwells, ducts and external walls (See 4.1 Area Calculations for details).



Brighton Avenue Croydon Park Urban Design Strategy & Design Option **2D Envelope Plan**

Isometric View I

Isometric View 2

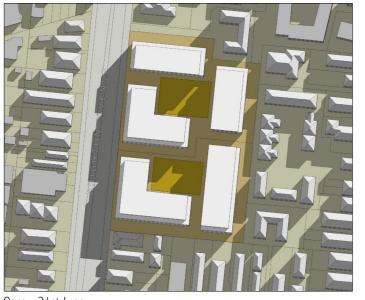
4.1 Area Calculations

Subject Site

Area (m2)	6,770 12,628 1.87 178 Residential Building Ervelope Area (m2) 8 Residential 8 Residential 9 Residen	Area (m2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Residential Gross Floor Area (m2) 1376 1376 1376 1376 1376 1376 1092 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total GFA	Residential NLA (m2)	Average No. of Dwellings 93 93 Average No. of Dwellings	Apartment Type 1 bedroom = 30%	Area 55m2
Retail uilding Envelope Area (m2)	1.87 178 178 Building Envelope Area (m2) 1720 1720 1720 1720 1720 1720 1720 1720 1855 Building Envelope Area (m2) 1560 1560 1560 1560	Retail Gross Floor Area (m2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gross Floor Area (m2) 1376 1376 1376 1376 0 0 0 0 0 0 0 0 6596 0 0 6596 0 7 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	6596	NLA (m2)	Dwellings		
ents A A Retail Uilding Envelope Area (m2) G B Retail Uilding Envelope	178 Residential Building Envelope Area (m2) 1720 1720 1720 1720 1720 1720 1720 1720 1720 1720 1720 1720 1365 Building Envelope Area (m2) 1560 1560 1560 1560	Retail Gross Floor Area (m2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gross Floor Area (m2) 1376 1376 1376 1376 0 0 0 0 0 0 0 0 6596 0 0 6596 0 7 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	6596	NLA (m2)	Dwellings		
G A Retail uilding Envelope Area (m2)	Residential Building Envelope Area (m2) 1720 1720 1720 1720 1720 1365 1365 1365 1365 1365 1365 1365 1365	Retail Gross Floor Area (m2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gross Floor Area (m2) 1376 1376 1376 1376 0 0 0 0 0 0 0 0 6596 0 0 6596 0 7 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	6596	NLA (m2)	Dwellings		
Retail uilding Envelope Area (m2)	Building Envelope Area (m2) 1720 1720 1720 1720 1720 1720 1365 -	Gross Floor Area (m2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gross Floor Area (m2) 1376 1376 1376 1376 0 0 0 0 0 0 0 0 6596 0 0 6596 0 7 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	6596	NLA (m2)	Dwellings		
Retail uilding Envelope Area (m2)	Building Envelope Area (m2) 1720 1720 1720 1720 1720 1720 1365 -	Gross Floor Area (m2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gross Floor Area (m2) 1376 1376 1376 1376 0 0 0 0 0 0 0 0 6596 0 0 6596 0 7 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	6596	NLA (m2)	Dwellings		
Retail uilding Envelope	1720 1720 1720 1720 1365	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1376 1376 1376 0 0 0 0 6596	Total GFA	Residential NLA (m2)	Average No. of Dwellings		
Retail uilding Envelope	1720 1720 1720 1365	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1376 1376 1092 0 0 0 6596	Total GFA	Residential NLA (m2)	Average No. of Dwellings		
Retail uilding Envelope	1720 1365	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1376 1092 0 0 0 6596	Total GFA	Residential NLA (m2)	Average No. of Dwellings		
Retail uilding Envelope	1365	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1092 0 0 6596	Total GFA	Residential NLA (m2)	Average No. of Dwellings		
Retail uilding Envelope	Residential be Building Ervelope Area (m2) 1560 1560 1560 1560	0 Retail Gross Floor Area (m2) 0 0 0 0 0 0 0	0 0 0 6596 Cross Floor Area (m2) 1248 1248 1248 1248 1248 1248 1040 0 0 0	Total GFA	Residential NLA (m2)	Average No. of Dwellings		
Retail uilding Envelope	Building Envelope Area (m2) 1560 1560 1560 1560	Retail Gross Floor Area (m2) 0 0 0 0 0	0 0 6596 Residential Gross Floor Area (m2) 1248 1248 1248 1248 1248 1248 1248 0 0 0	Total GFA	Residential NLA (m2)	Average No. of Dwellings		
Retail uilding Envelope	Building Envelope Area (m2) 1560 1560 1560 1560	Retail Gross Floor Area (m2) 0 0 0 0 0	0 0 6596 Residential Gross Floor Area (m2) 1248 1248 1248 1248 1248 1248 1040 0 0 0	Total GFA	Residential NLA (m2)	Average No. of Dwellings		
Retail uilding Envelope	Building Envelope Area (m2) 1560 1560 1560 1560	Retail Gross Floor Area (m2) 0 0 0 0 0	0 6596 Residential Gross Floor Area (m2) 1248 1248 1248 1248 1248 1040 0 0 0	Total GFA	Residential NLA (m2)	Average No. of Dwellings		
Retail uilding Envelope	Building Envelope Area (m2) 1560 1560 1560 1560	Retail Gross Floor Area (m2) 0 0 0 0 0	6596 Residential Gross Floor Area (m2) 1248 1248 1248 1248 1248 1040 0 0 0 0	Total GFA	Residential NLA (m2)	Average No. of Dwellings		
Retail uilding Envelope	Building Envelope Area (m2) 1560 1560 1560 1560	Retail Gross Floor Area (m2) 0 0 0 0 0	Residential Gross Floor Area (m2) 1248 1248 1248 1248 1248 1040 0 0 0 0	Total GFA	Residential NLA (m2)	Average No. of Dwellings		
Retail uilding Envelope	Building Envelope Area (m2) 1560 1560 1560 1560	Gross Floor Area (m2) 0 0 0 0 0	Gross Floor Area (m2) 1248 1248 1248 1248 1040 0 0 0 0 0		NLA (m2)	Dwellings		
Retail uilding Envelope	Building Envelope Area (m2) 1560 1560 1560 1560	Gross Floor Area (m2) 0 0 0 0 0	Gross Floor Area (m2) 1248 1248 1248 1248 1040 0 0 0 0 0		NLA (m2)	Dwellings		
	1560 1560 1560	0 0 0	1248 1248 1248 1040 0 0 0 0 0	6032	5429	85		
	1560 1560 1560	0 0 0 0	1248 1248 1040 0 0 0 0 0	6032	5429	85		
	1560	0	1248 1040 0 0 0 0	6032	5429	85		
		0	1040 0 0 0 0	6032	5429	85		
			0 0 0 0	6032	5429	85		
		0	0 0 0	6032	5429	85		
		0	0	6032	5429	85		
		0	0	6032	5429	85		
		0		6032	5429	85		
		0	6032	6032	5429	85		
			1		1 1			<u>55M</u> /
							2 bedroom = 70%	70m2
							2 bedroom = 70%	70m2
							Apartment Type	Proposed No
							1 bedroom	53
							2 bedroom	125
							TOTAL	178
	1							
		Total GFA	FSR	Resi. NLA	No. of Units			
etail GFA	Residential GFA			5936	93			
0	6596	6596		5429	85			
0	6596 6032	6596 6032			0			
0	6596	6596		0				1
		GFA Residential GFA	0 6596 6596	0 6596 6596 0 6032 6032	0 6596 6596 5936 0 6032 6032 5429	0 6596 6596 5936 93 0 6032 6032 5429 85	0 6596 5936 93 0 6032 6032 5429 85	0 6596 6596 5936 93 0 6032 6032 5429 85

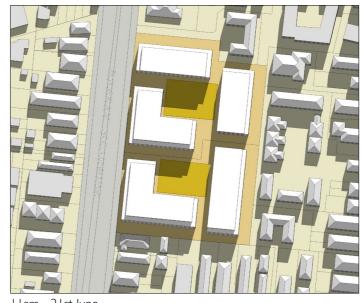
Northern Site

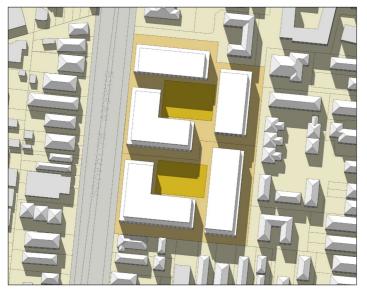
Total Or	Elect Area	8,050			1		
	ss Floor Area	14,992					
-loor Spa	ace Ratio	1.86					
otal apar	tments	208	approx.				
BUILDI	NG A						
Level	Retail Building Envelope Area (m2)	Residential Building Envelope Area (m2)	Retail Gross Floor Area (m2)	Residential Gross Floor Area (m2)	Total GFA	Residential NLA (m2)	Average No. of Dwellings
1		1565	0	1252			
2		1565	0	1252			
3		1565	0	1252			
4		1565	0	1252			
5		1200	0	960			
6		1200		0			
7				0			
8				0			
0				0			
Tetal			•	-	-000	5074	
Total			0	5968	5968	5371	83
BUILDI	NGB						
Level	Retail Building Envelope Area (m2)	Residential Building Envelope Area (m2)	Retail Gross Floor Area (m2)	Residential Gross Floor Area (m2)	Total GFA	Residential NLA (m2)	Average No. of Dwellings
1		1180	0	944			
2		1180	0	944			
3		1180	0	944			
4		1180	0	944			
5		895	0	716			
6				0			
7				0			
8				0			
				0			
Total			0	4492	4492	4043	62
TULAI			0	4432	4432	4045	02
BUILDI							
Level	Retail Building Envelope Area (m2)	Residential Building Envelope Area (m2)	Retail Gross Floor Area (m2)	Residential Gross Floor Area (m2)	Total GFA	Residential NLA (m2)	Average No. of Dwellings
1		1175	0	940			
2		1175	0	940			
		1175	0	940 940			
2			0				
2 3		1175	0	940			
2 3 4		1175 1175	0	940 940			
2 3 4 5		1175 1175	0	940 940 772			
2 3 4 5 6		1175 1175	0	940 940 772 0			
2 3 4 5 6 7		1175 1175	0	940 940 772 0 0			
2 3 4 5 6 7		1175 1175	0	940 940 772 0 0 0	4532	4079	63
2 3 4 5 6 7 8		1175 1175	0 0 0	940 940 772 0 0 0 0 0	4532	4079	63
2 3 4 5 6 7 8		1175 1175	0 0 0	940 940 772 0 0 0 0 0	4532	4079	63
2 3 4 5 6 7 8		1175 1175	0 0 0	940 940 772 0 0 0 0 0	4532	4079	63
2 3 4 5 6 7 8		1175 1175	0 0 0	940 940 772 0 0 0 0 0	4532	4079	63
2 3 4 5 6 7 8		1175 1175	0 0 0	940 940 772 0 0 0 0 0	4532	4079	63
2 3 4 5 6 7 8		1175 1175	0 0 0	940 940 772 0 0 0 0 0	4532	4079	63
2 3 4 5 6 7 8 Total	Retail GFA	1175 1175	0	940 940 772 0 0 0 0 0	4532	4079 4079	63
2 3 4 5 6 7 8 Total			0	940 940 772 0 0 0 4532			63
2 3 4 5 6 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7		1175 1175 965	0 0 0 0	940 940 772 0 0 0 4532	Resi. NLA 5371	No. of Units 83	63
2 3 4 5 6 7 8 7 8 7 8 7 8 7 8 8 8 8 8 8 8 8 8	0	1175 1175 965	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	940 940 772 0 0 0 4532	Resi. NLA 5371 4043	No. of Units 83 62	63
2 3 4 5 6 7 8 7 8 7 7 8 7 7 8 7 7 8 7 8 8 9 9 9 9	0	1175 1175 965	0 0 0 0	940 940 772 0 0 0 4532	Resi. NLA 5371	No. of Units 83	63 63



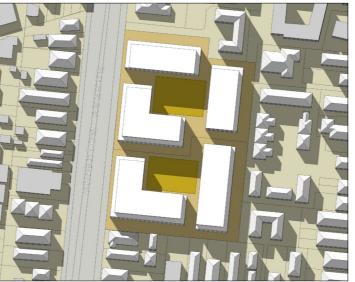
Northern Site

Subject Site

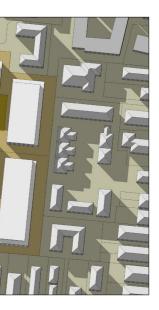

Shadow Diagrams - Midwinter



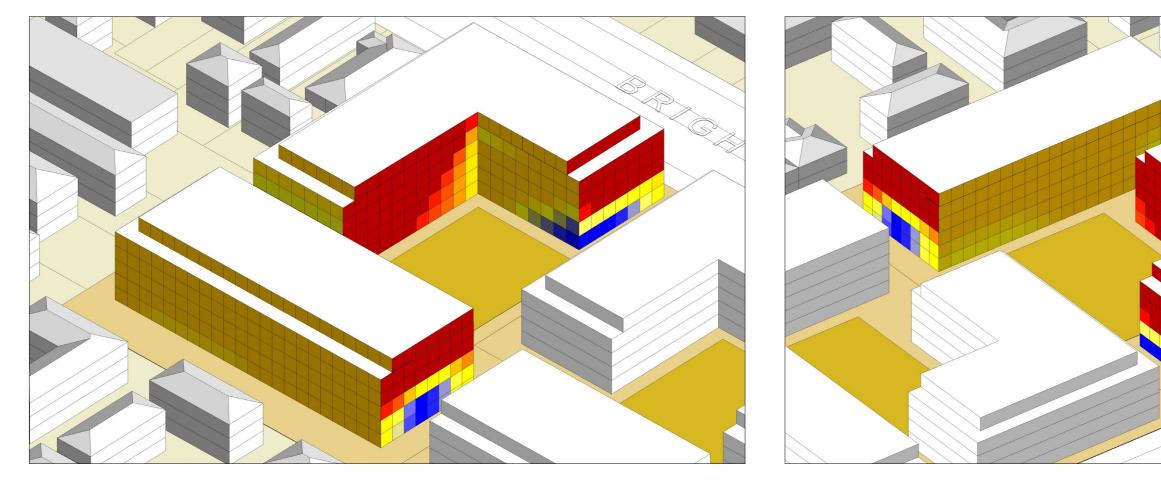
10am - 21st June



lpm - 21st June

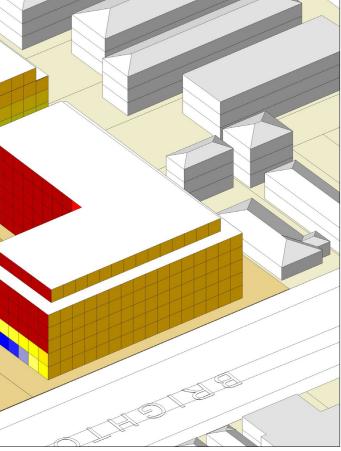


2pm - 21st June

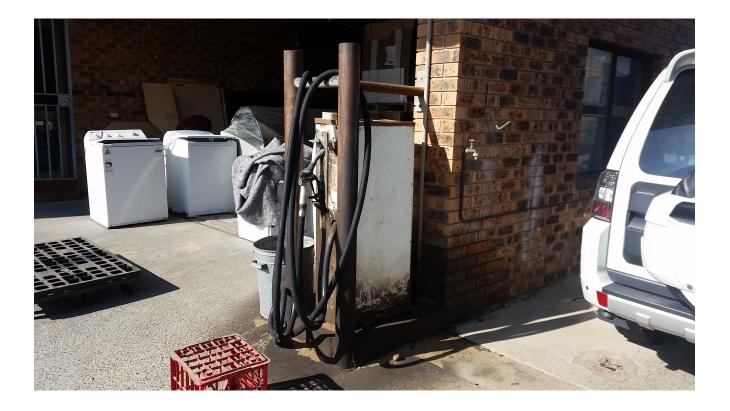


3pm - 21st June

ae design partnership architecture urban design planning


Sun Hours Diagram - Midwinter

Solar access gradient 9am-3pm mid-winter



Brighton Avenue Croydon Park Urban Design Strategy & Design Option

Appendix D– Site Photographs

Appendix E– Borehole Logs

				str			25-33 Refe E237	3 Brigh r to Fig 75	nton A gure 2	estigation venue, Croydon Park NSW ? Contractor Geosense Dri Pty Ltd Drill Rig Hanjin D&B Inclination -90°	lling P		Sheet 1 OF 1 Date Started 19/3/18 Date Completed 19/3/18 Logged MD Date: Checked Date:
F			Dri	lling		Sampling				Field Material Des			
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOMETER DETAILS
				0				\boxtimes	-	FILL: Silty CLAY; medium to high plasticity, dark brown, no	-		Gatic Cover
EA LIB 1.03.GLB Log IS AUBOREHOLE 3 £23775 SOIL LOGS GPJ <	ADVI				6.10	BH1M_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 0.2 ppm BH1M_0.8-0.9 ES 0.80-0.90 m 0.80 m PID = 0.2 ppm				Hole Terminated at 6.10 m Target Depth Reached. Borehole Converted into Monitoring Well.			Gall Cover Grout 50 mm uPVC Casing Bentonite
EIA LIB 1.03.GLB Lo			I	10—		I This boreh	nole log	g shou	ld be	read in conjunction with Environmental Investigations Austr	alia's	accor	I mpanying standard notes.

Г

٦

10/04/2018 12:35 10.0.000 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

<<DrawingFile>>

IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ

8

EIA LIB 1.03.GLB 1

2.0

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW

Position

Job No. E23775 Client R01 Croydon 88 Pty Ltd

Refer to Figure 2 E23775

Contractor Geosense Drilling Drill Rig Hanjin D&B Inclination -90°

Geosense Drilling Pty Ltd Hanjin D&B
 Sheet
 1
 OF
 1

 Date Started
 19/3/18

 Date Complete
 19/3/18

 Logged
 MD
 Date:

 Checked
 Date:

Drilling Sampling **Field Material Description** PENETRATION RESISTANCE MOISTURE CONDITION CONSISTENCY DENSITY JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0.0 FILL $\ensuremath{\mathsf{FILL}}$ Clayey SAND; fine to coarse grained, dark brown, with angular to sub-angular gravels, no odour. _ BH2_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 0.2 ppm GWNE 0.30 AD _ RESIDUAL SOIL Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour. CI-CH М BH2_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 0.3 ppm 0.5 $\overline{\mathbf{x}}$ 0.60 Hole Terminated at 0.60 m Target Depth Reached. Backfilled with Drilling Spoil. 1.0 1.5

This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

n
n

Location 25-33 Brighton Avenue, Croydon Park NSW

Position

Job No. Client

Refer to Figure 2 E23775 R01 Croydon 88 Pty Ltd

Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B -90° Inclination

Sheet		1 OF 1
Date Sta	irted	19/3/18
Date Co	mpleted	19/3/18
Logged	MD	Date:

BOREHOLE: BH3

IVI ate: Checked Date:

		Dril	lling		Sampling				Field Material Description				
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0							-			
			-		BH3_0.3-0.4 ES 0.30-0.40 m 0.30 m PID = 0.2 ppm								
AD/T	-	GWNE	0.5 —							м	-		
			-		BH <u>3_0.9-1.0 ES</u> 0 90-1 00 m								
			1.0 —		BH3_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 0.3 ppm								
			-										
			1.5 —										
			-										
			- 2.0—		This borehol	e log	shoul	d be	read in conjunction with Environmental Investigations Austra	lia's		npanying standard notes.	

												В	OR	EHOLE:	BH4M	
	Conta	mination		ediation	Geotechni	Project Location Position Job No. Client	25-33 Refe E237	3 Brigh r to Fig 75	nton A gure 2	Contractor G Pty Ltd Drill Rig H	Geosense Drillir Hanjin D&B 90°	ng Pty L	_td	Sheet Date Started Date Completed Logged MD Checked	1 OF 1 19/3/18 19/3/18 Date: Date:	
F		0	Drillir	ng		Sampling				Field N	Material Descri	ption				=
METUOD	PENETRATION	_		UEP IH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPT	ΠΟΝ	MOISTURE CONDITION CONSISTENCY			ETAILS	
EA LIB 1.03 GLB Log IS AUBOREHOLE 3 E23775 SOIL LOGS.GFJ < <drawingfile>> 1004/2016 12.35 10.0.000 Daiget Lab and in Situ Tool - DGD Lb: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 A</drawingfile>					6.00	BH4M_0.2-0.3 ES 0.20-0.30 m PID = 0.3 ppm BH4M_0.9-1.0 ES 0.90-1.00 m PID = 0.4 ppm PID = 0.4 ppm			Id be	FILL: Clayey SAND; fine to coarse grained, dark angular to sub-angular gravels, no odour. Silty CLAY; medium to high plasticity, dark brow orange, no odour.	<i>i</i> n, mottled	M			Gatic Cover Grout 50 mm uPVC Casing Bentonite Sand 50 mm uPVC Screen	
EIA LIB 1.03.GL						This bore	hole log	g shou	ld be	read in conjunction with Environmental Investi	gations Australi	a's acc	ompanyi	ng standard notes.		

ſ

Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

10 0 000

0/04/2018 12:35

EIA LIB 1.03.GLB Log IS AU BOREHOLE 3 E23775 SOIL LOGS.GP.

ProjectDetailed Site InvestigationLocation25-33 Brighton Avenue, Croydon Park NSW

Location 25-33 Brighton Av Position Refer to Figure 2

Position Job No.

Client

E23775 R01 Croydon 88 Pty Ltd Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°
 Sheet
 1 OF 1

 Date Started
 19/3/18

 Date Complete
 19/3/18

 Logged
 MD

 Checked
 Date:

		Dri	lling		Sampling				Field Material Desc	ripti	on		-
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE		STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0	-				-	FILL: Clayey SAND; fine to coarse grained, dark brown, with angular to sub-angular gravels, no odour.	-		FILL	
			-	-	BH5_0.3-0.4 ES 0.30-0.40 m 0.30 m PID = 0.3 ppm			•					
AD/T	-	GWNE	0.5	0.60				CI- CH	Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour.	- M	-	RESIDUAL SOIL	-
			-	-					orange, no odour.				
				1.00	BH5_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 0.6 ppm				Hole Terminated at 1.00 m				
			-						Target Depth Reached. Backfilled with Drilling Spoil.				
			-										
			1.5 —	-									-
			-	-									
			-	-									
			-	-									
			2.0 —		This borehol	e lo	 g shoul	d be	read in conjunction with Environmental Investigations Austra	 alia's	accor	mpanying standard notes.	

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW

Position Job No. Client

Refer to Figure 2 E23775 R01 Croydon 88 Pty Ltd

Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°

1 OF 1 Sheet Date Started Date Completed 19/3/18 Logged MD Date: Checked

BOREHOLE: BH6

19/3/18 Date:

									inclination -90			Checked Date.	=
	_		lling		Sampling	_			Field Material Desc	riptic	on N		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0 —			Γ	\boxtimes	-	CONCRETE: 200mm thick.			CONCRETE HARDSTAND	Т
			-	0.20						-			
			-		BH6_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 0.2 ppm		\bigotimes	-	FILL: Clayey SAND; fine to coarse grained, dark brown, with angular to sub-angular gravels, no odour.			FILL	
AD/T	-	GWNE	0.5 —								-		-
			-	0.60				CI- CH	Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour.			RESIDUAL SOIL	+
			-						orange, no odour.	M			
EA 1.03 2014-07-05			-		BH6_0.9-1.0 ES 0.90-1.00 m								-
. 1.03 2014-07-05 Prj: E			1.0—	1.10	0.90 m PID = 0.2 ppm								-
EA LIB 103 GIB Log IS AUBOREHOLE 3 E23775 SOIL LOGS GPJ < <drawingfile>> 1004/2018 12:35 10.0000 Dagel Lab and In Sin Tool - DGD Lb: EA 1.03 2014-07:05 Pr; EIA 1.03 2014-07-05</drawingfile>									Hole Terminated at 1.10 m Target Depth Reached. Backfilled with Drilling Spoil.				
0 Datgel Lab and In			-										
12:35 10.0.00			-										
> 10/04/2018			1.5 —										-
< <drawingfile></drawingfile>			_										
SOIL LOGS.GPJ			-										.
HOLE 3 E23775			_										
og IS AU BORE			_										.
V LIB 1.03.GLB L(I	2.0—	I	This borehole	e log	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accon	npanying standard notes.	
<u></u>													-

Contamination Remediation Geotechni	Location 25-33 Position Refer Job No. E237	led Site Investigation 8 Brighton Avenue, Croydon Park NSW 1 to Figure 2 75 Croydon 88 Pty Ltd	Contractor Geosense Drilli Drill Rig Hanjin D&B Inclination -90°		Sheet Date Started Date Completed Logged MD Checked	1 OF 1 19/3/18
Drilling	Sampling		Field Material Descr	iption		
METHOD PENETRATION RESISTANCE WATER WATER (metres)	SAMPLE OR FIELD TEST	C LOG C LOG C LOG C LOG C LOG C C C LOG C C C C C C C C C C C C C C C C C C C	RIAL DESCRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY DENSITY		TAILS
	BH7M_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 0.2 ppm BH7M_0.9-1.0 ES 0.90 m PID = 0.2 ppm BH7M_1.4-1.5 ES 1.40-1.50 m 1.40 m PID = 0.2 ppm	- CONCRETE: 200mm thick. - FILL: Clayey SAND; fine to corangular gravels - Silty CLAY; medium to high pl - CH - Silty CLAY; medium to high pl - CH - Silty CLAY; medium to high pl - - - S - S - S - S - S - S - S - S - S - S - S - S - S - S - S - - - - - - - - - - - - - - - - - - - - - - - - -	asticity, dark brown, mottled	M W W		Gatic Cover Grout So mm uPVC Casing Bentonite Sand So mm uPVC Screen

Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

10.0.000

10/04/2018 12:35

<<DrawingFile>>

IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ

8

FIA LIB 1 03 GLB

Project Detailed Site Investigation

 Location
 25-33 Brighton Avenue, Croydon Park NSW

 Position
 Refer to Figure 2

Position Job No.

Client

E23775 R01 Croydon 88 Pty Ltd Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90° Sheet1 OF 1Date Started19/3/18Date Completed19/3/18Logged MDDate:

Date:

BOREHOLE: BH8

Checked

Drilling Sampling **Field Material Description** PENETRATION RESISTANCE JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS GRAPHIC LOG SAMPLE OR FIELD TEST SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0.0 CONCRETE HARDSTAND CONCRETE: 200mm thick. -0.20 FILL FILL: Clayey SAND; fine to coarse grained, dark brown, with angular to sub-angular gravels, no odour. BH8_0.3-0.4 ES QD1 QT1 0.30-0.40 m 0.30 m PID = 0.2 ppm 0.5 0.60 RESIDUAL SOIL Cŀ Silty CLAY; medium to high plasticity, dark brown, mottled |×| CH orange, no odour. GWNE AD/T М BH8_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 0.4 ppm 1.0 x 1.40 Hole Terminated at 1.40 m Target Depth Reached. Backfilled with Drilling Spoil. 1.5 2.0 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW

Position

Job No.

Client

Refer to Figure 2 E23775 R01 Croydon 88 Pty Ltd

Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°

Date Started Logged MD Checked

Sheet

1 OF 1 19/3/18 Date Completed 19/3/18 Date: Date:

		Dril	ling		Sampling				Inclination -90° Field Material Desci	intic	<u></u>		
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL			CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0	0.20	BH9_0.3-0.4 ES 0.30-0.40 m 0.30 m PID = 0.6 ppm			-	CONCRETE: 200mm thick. FILL: Gravelly SAND; fine to coarse grained, dark orange, angular to sub-angular gravel, no odour.	-		CONCRETE HARDSTAND	
			- 0.5	0.60				-	FILL: Silty CLAY; medium to high plasticity, dark brown, with angular to sub-angular gravels and trace sandstone, no odour.				-
	-	GWNE	- 1.0		BH9_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 0.6 ppm					м	-		-
			- - 1.5 —	1.30	BH9_1.5-1.6 ES 1.50-1.60 m 1.50 m PID = 0.5 ppm			CI- CH	Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour.			RESIDUAL SOIL	
			-	1.70	ни – 0.3 ррп				Hole Terminated at 1.70 m Target Depth Reached. Backfilled with Drilling Spoil.				
			2.0 —		This borehold	e log	 g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's i	accor	npanying standard notes.	

10.0.000 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

10/04/2018 12:35

--Draw

EIA LIB 1.03. GLB Log IS AU BOREHOLE 3 E23775 SOIL LOGS. GPJ

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW

Position Job No. Client Refer to Figure 2 E23775 R01 Croydon 88 Pty Ltd

Contractor Geosense Drill Rig Hanjin D& Inclination -90°

Geosense Drilling Pty Ltd Hanjin D&B -90°
 Sheet
 1 OF 1

 Date Started
 19/3/18

 Date Complete
 19/3/18

 Logged
 MD

 Checked
 Date:

BOREHOLE: BH10M

Drilling Sampling								Field Material Description						
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOMETER DETAILS		
F			0 —				XX	- 1	CONCRETE: 200mm thick.	-		📅 🗸 🗸 🖛 Gatic Cover		
ADIT	-			0.20	BH10M_0.3-0.4 ES 0.30-0.40 m 0.30 m PID = 0.7 ppm BH10M_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 0.7 ppm			CL- CH	CONCRETE: 200mm thick. FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour. Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour.	_	-			
			4 5 	6.10						w	-	Sand 50 mm uPVC Screen		
									Hole Terminated at 6.10 m Target Depth Reached. Borehole Converted into Monitoring Well.					
					This borehole	e log	y shoul	ld be	read in conjunction with Environmental Investigations Austra	alia's a	accor	npanying standard notes.		

Project Detailed Site Investigation

 Location
 25-33 Brighton Avenue, Croydon Park NSW

 Position
 Refer to Figure 2

Job No. Client E23775 R01 Croydon 88 Pty Ltd Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°

BOREHOLE: BH11

Sheet	1 OF 1
Date Started	19/3/18
Date Completed	19/3/18
Logged MD	Date:
Checked	Date:

Drilling Sampling **Field Material Description** PENETRATION RESISTANCE JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS GRAPHIC LOG SAMPLE OR FIELD TEST SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0.0 CONCRETE HARDSTAND CONCRETE: 200mm thick. -0.20 FILL FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour. BH11_0.3-0.4 ES 0.30-0.40 m 0.30 m PID = 0.6 ppm 0.5 0.60 RESIDUAL SOIL Cŀ Silty CLAY; medium to high plasticity, dark brown, mottled |×| ĊН orange, no odour. '<u>₹</u>' GWNE AD/T -Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 Μ BH11_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 0.5 ppm 1.0 10.0.000 10/04/2018 12:35 x 1.50 -1.5-Hole Terminated at 1.50 m Target Depth Reached. Backfilled with Drilling Spoil. <<DrawingFile>> IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ 8 2.0 FIA LIR 1 03 GI B 1 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

Project Detailed Site Investigation

 Location
 25-33 Brighton Avenue, Croydon Park NSW

 Position
 Refer to Figure 2

Job No. Client E23775 R01 Croydon 88 Pty Ltd Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90° Sheet1 OF 1Date Started19/3/18Date Complete19/3/18LoggedMDDate:CheckedDate:

	Drilling Sampling									Field Material Description			
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
				0.0	0.20				-	CONCRETE: 200mm thick. FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour.	-		CONCRETE HARDSTAND
	-		Ш			BH12_0.5-0.6 ES 0.50-0.60 m							-
	AD/T	-	GWNE	-	0.70	0.50 m PID = 0.4 ppm			-	SANDSTONE; light orange-brown, weathered, no odour.	м	-	WEATHERED ROCK
tigel Lab and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05				- 1.0 —	1.10	BH12_1.0-1.1 ES 1.00-1.10 m 1.00 m PID = 0.6 ppm							-
atgel Lab and In Situ Tool - DGD Lib: EIA				-						Hole Terminated at 1.10 m Target Depth Reached. Backfilled with Drilling Spoil.			-
< <drawingfile>> 10/04/2018 12:35 10.0.000 De</drawingfile>				1.5—									-
OLE 3 E23775 SOIL LOGS.GPJ < <drav< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drav<>				-									-
EIA LIB 1.03.GLB Log IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ				2.0—		This borehole	e log	should	d be	read in conjunction with Environmental Investigations Austra	lia's a	accon	- npanying standard notes.

10.0.000 Datgel Lab and In Situ Tool - DGD | Llb: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

10/04/2018 12:35

--Draw

EIA LIB 1.03.GLB Log IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW

Position Job No. Refer to Figure 2 E23775

Client

R01 Croydon 88 Pty Ltd

 Contractor
 Geosense Drilling Pty Ltd

 Drill Rig
 Hanjin D&B

 Inclination
 -90°

Sheet1 OF 1Date Started20/3/18Date Complete20/3/18Logged MDDate:CheckedDate:

BOREHOLE: BH13M

Drilling Sampling							Field Material Description							
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	PIEZOMETER DETAILS		
			0 —					-	CONCRETE: 200mm thick.	-		Gatic Cover	-	
			-	0.20	BH13M_0.3-0.4 ES 0.30-0.40 m		\bigotimes	-	FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour.					
			-	0.00				-	SANDSTONE; light orange-brown, weathered, no odour.					
			1		BH13M_0.9-1.0 ES 0.90-1.00 m							Grout	-	
			-	1.50			× ×	CL- CI	Silty CLAY; low to medium plasticity, orange mottled grey, no odour.			50 mm uPVC		
			2—				x x					Casing 50 mm uPVC Screen	-	
			-				× ×							
			3-							м		Bentonite	-	
AD/T	-		-	3.20			`	-	SHALE; weathered, no odour.		-			
			-											
			4											
			-									Sand		
			5—										-	
		\square	-	5.50	BH13M_5.5-5.6 ES 5.50-5.60 m				From 5.5m, moderate hydrocarbon odour.	_	-			
			- 6 —		5.50 m PID = 64.1 ppm					w			_	
			-	6.40										
			-						Hole Terminated at 6.40 m Refusal. Borehole Converted into Monitoring Well.				_	
			7—										-	
			-											
			8										-	
			-											
			- 9 —										-	
			-											
			-											
			10 —	·	This borehole	log	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's	acco	mpanying standard notes.		

Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

10.0.000

10/04/2018 12:36

<<DrawingFile>>

IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ

8

FIA LIR 1 03 GI B 1

Project Detailed Site Investigation

 Location
 25-33 Brighton Avenue, Croydon Park NSW

 Position
 Refer to Figure 2

Job No. Client

E23775 R01 Croydon 88 Pty Ltd Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°

Sheet	1 OF 1
Date Started	20/3/18
Date Completed	20/3/18

Date:

Date:

BOREHOLE: BH14

Logged MD

Checked

Drilling Sampling **Field Material Description** PENETRATION RESISTANCE JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS GRAPHIC LOG SAMPLE OR FIELD TEST SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0.0 CONCRETE HARDSTAND CONCRETE: 200mm thick. -0.20 CI-CH RESIDUAL SOIL Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour. BH14_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 2.2 ppm X 0.5 GWNE AD/T _ 0.80 W WEATHERED ROCK SANDSTONE; light orange-brown, weathered, no odour. 1.0 BH14_1.1-1.2 ES 1.10-1.20 m 1.10 m PID = 1.8 ppm 1.40 Hole Terminated at 1.40 m Target Depth Reached. Backfilled with Drilling Spoil. 1.5 2.0 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

10/04/2018 12:36 10.0.000 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

EIA LIB 1.03. GLB Log IS AU BOREHOLE 3 E23775 SOIL LOGS. GPJ <<DrawingFile>>

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW Position

Job No. Client

Refer to Figure 2 E23775 R01 Croydon 88 Pty Ltd

Contractor Hanjin D&B Drill Rig Inclination -90°

Geosense Drilling Pty Ltd

Sheet 1 OF 1 Date Started 20/3/18 Date Completed 20/3/18 Logged MD Date: Checked Date:

	Drilling Sampling								Field Material Description						
	METHOD	PENE IRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
	METH	PENEL	WATE		0.20		RECO		· 미SCS	CONCRETE: 200mm thick. FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour. Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour.		CONS	OBSERVATIONS CONCRETE HARDSTAND FILL RESIDUAL SOIL		
1 Uarger Lab and In Situ 1001 - UGU LID: EIA 1.03 ZV14-U/-U5 MJ; EIA 1.03 ZV14-U/-U5	AD/T	-	GWNE			BH15_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 1.3 ppm					w	-			
: 3 E23/73 SUIL LUGS.GPJ < <uraningfile>> 10/04/2018 12:36 10.0.000</uraningfile>				1.5 	1.50					Hole Terminated at 1.50 m Target Depth Reached. Backfilled with Drilling Spoil.					
1.U3.GLB LOG IS AU BUREHULE				2.0 —		This borehol	e log	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a		npanying standard notes.		

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW

Position Job No. Client Refer to Figure 2 E23775 R01 Croydon 88 Pty Ltd

Contractor Geosense Drill Rig Hanjin D&I Inclination -90°

Geosense Drilling Pty Ltd Hanjin D&B -90°
 Sheet
 1 OF 1

 Date Started
 20/3/18

 Date Complete
 20/3/18

 Logged
 MD

 Checked
 Date:

	Drilling				Sampling				Field Material Description				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0				\bigotimes	-	CONCRETE: 200mm thick.	-		CONCRETE HARDSTAND	
			-	0.20			$\overset{\times}{\times}$	-	FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour.			FILL	
					BH16_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 1.4 ppm								
AD/T	-	GWNE	-		BH16_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 1.2 ppm					м	-		
			1.0 — - -	1.00				-	SANDSTONE; light orange-brown, weathered, no odour.			WEATHERED ROCK	
			- 	1.50	BH16_1.4-1.5 ES 1.40-1.50 m 1.40 m PID = 1.1 ppm				Hole Terminated at 1.50 m				
			-						Target Depth Reached. Backfilled with Drilling Spoil.				
			-										
1			2.0 —		This borehole	e log	shoul	d be	read in conjunction with Environmental Investigations Austra	lia's	accon	npanying standard notes.	

Project Detailed Site Investigation

Location25-33 Brighton Avenue, Croydon Park NSWPositionRefer to Figure 2

R01 Croydon 88 Pty Ltd

Position Job No.

Client

E23775

Contractor Drill Rig Inclination

or Geosense Drilling Pty Ltd Hanjin D&B n -90° Sheet1 OF 1Date Started20/3/18Date Complete20/3/18Logged MDDate:CheckedDate:

Drilling			ling		Sampling		Field Material Description						
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
			0.0 —				-	CONCRETE: 200mm thick.			CONCRETE HARDSTAND		
			-	-					-				
			-	0.20			-	FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, slight hydrocarbon		_	FILL		
			-	-				odour.					
			-	-									
			0.5 —	-	PH17 0506ES								
			_		BH17_0.5-0.6 ES 0.50-0.60 m 0.50 m PID = 8.5 ppm								
			-										
			-	-									
AD/T	-	GWNE		-						-			
		G	1.0 —	-	BH17_1.0-1.1 ES 1.00-1.10 m 1.00 m				м				
			-	-	PID = 6.2 ppm								
			-	-									
			-	1.30			{ : -	SANDSTONE; light orange-brown, weathered, slight			WEATHERED ROCK		
			-	-		· · · · · · · · · · · · · · · · · · ·	:	nyarocarbon odour.					
			1.5 —	-	BH17 1.5-1.6 ES		:						
			-	-	BH17_1.5-1.6 ES 1.50-1.60 m 1.50 m PID = 3.3 ppm		:						
			_			· · · · · · · · · · · · · · · · · · ·	:						
						· · · · · · · · · · · · · · · · · · ·	:						
			-	1.00		· · · · · · · · · · · · · · · · · · ·	:						
				1.90			•	Hole Terminated at 1.90 m Target Depth Reached. Backfilled with Drilling Spoil.					
			2.0 —		This borehole	log sho	uld be	read in conjunction with Environmental Investigations Austra	llia's a	accor	npanying standard notes.		

IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ <<DrawingFile>>

8

EIA LIB 1.03.GLB 1

BOREHOLE: BH18

Project	Detailed Site	Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW Position Refer to Figure 2

Job No. Client

E23775 R01 Croydon 88 Pty Ltd Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°

Sheet		1	OF 1
Date Sta	20	0/3/18	
Date Cor	npleted	20	0/3/18
Logged	MD	D	ate:
Checked		D	ate:

1

Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) DEPTH RL 0.0 CONCRETE HARDSTAND CONCRETE: 200mm thick. -0.20 WEATHERED ROCK SANDSTONE; light orange-brown, weathered, no odour. GWNE AD/T М 0.5 BH18_0.5-0.6 ES 0.50-0.60 m 0.50 m PID = 1.8 ppm 0.70 Hole Terminated at 0.70 m Target Depth Reached. Backfilled with Drilling Spoil. 10/04/2018 12:36 10.0.000 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 1.0 -1.5 2.0 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW Position Refer to Figure 2

Job No. Client

E23775 R01 Croydon 88 Pty Ltd

Geosense Drilling Pty Ltd Contractor Drill Rig Hanjin D&B Inclination -90°

Sheet 1 OF 1 Date Started 20/3/18 Date Completed 20/3/18 Logged MD Date: Checked Date:

E	Drilling					Sampling				Field Material Description				
	MEIHOU	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
				0.0 —	0.20				-	CONCRETE: 200mm thick.	-		CONCRETE HARDSTAND	
T.C.V	AD/I	-	GWNE	- - 0.5 -	-	BH19_0.5-0.6 ES 0.50-0.60 m 0.50 m PID = 2.2 ppm			-	FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour.		-	FILL	
00 Datget Lab and in Situ Tooi - DGD Lab: EIA 1.03 2014-07-05 Pt; EIA 1.03 2014-07-05				- 1.0	-	BH19_1.0-1.1 ES 1.00-1.10 m 1.00 m PID = 1.2 ppm		X	CŀCH	Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour.	- м		RESIDUAL SOIL	
EA LIB 103.GLB Log IS AUBOREHOLE 3 E2375 SOIL LOGS.GPJ < r				1.5	<u> 1.40 </u>					Hole Terminated at 1.40 m Target Depth Reached. Backfilled with Drilling Spoil.				
EIA LIB 1.03.GLB L				2.0—		This borehol	e log	shoul	d be	read in conjunction with Environmental Investigations Austra	lia's	accon	npanying standard notes.	

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW

Position Job No. Client Refer to Figure 2 E23775 R01 Croydon 88 Pty Ltd

Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90° Sheet1 OF 1Date Started20/3/18Date Completed20/3/18Logged MDDate:CheckedDate:

			Dri	lling		Sampling				Field Material Description				
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
 <-ChranningFile>> 10/04/2018 12:36 10.0.000 Dage Lab and In Situ Tool - DGD Lb: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 	AD/T AD/T	PENET	GWNE GWNE		0.20				- naces	CONCRETE: 200mm thick. FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour. Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour. Silty CLAY; medium to high plasticity, dark brown, mottled areage, no odour. Hole Terminated at 1.30 m Target Depth Reached. Backfilled with Drilling Spoil.	M MOIST CONDI	CONSI	CONCRETE HARDSTAND	
EIA LIB 1.03.GLB Log IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ				2.0—		This borehole	e log	shoul	dbe	read in conjunction with Environmental Investigations Austra	lia's a	accon	npanying standard notes.	

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW Position Refer to Figure 2

Job No. Client

E23775 R01 Croydon 88 Pty Ltd

Geosense Drilling Pty Ltd Contractor Drill Rig Hanjin D&B Inclination -90°

Sheet 1 OF 1 Date Started 20/3/18 Date Completed 20/3/18 Logged MD

BOREHOLE: BH21

Checked

Date: Date:

Ī			Dri	lling		Sampling				Field Material Description					
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
-	,т		NE	0.0					-	FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour.			FILL .		
-	AD/T	-	GWNE		0.50	BH21_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 2 ppm					м	-			
				-						Hole Terminated at 0.50 m Refusal. Backfilled with Drilling Spoil.					
07-05 Prj: EIA 1.03 2014-07-05				- 1.0 —											
pel Lab and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05				-											
10/04/2018 12:36 10.0.000 Datgel Lab and I				- 1.5 —									-		
< <drawingfile>></drawingfile>				-											
LIB 1.03.GLB Log IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ				- 2.0											
EIA LIB 1.03.GLB	2.0 2.0 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.														

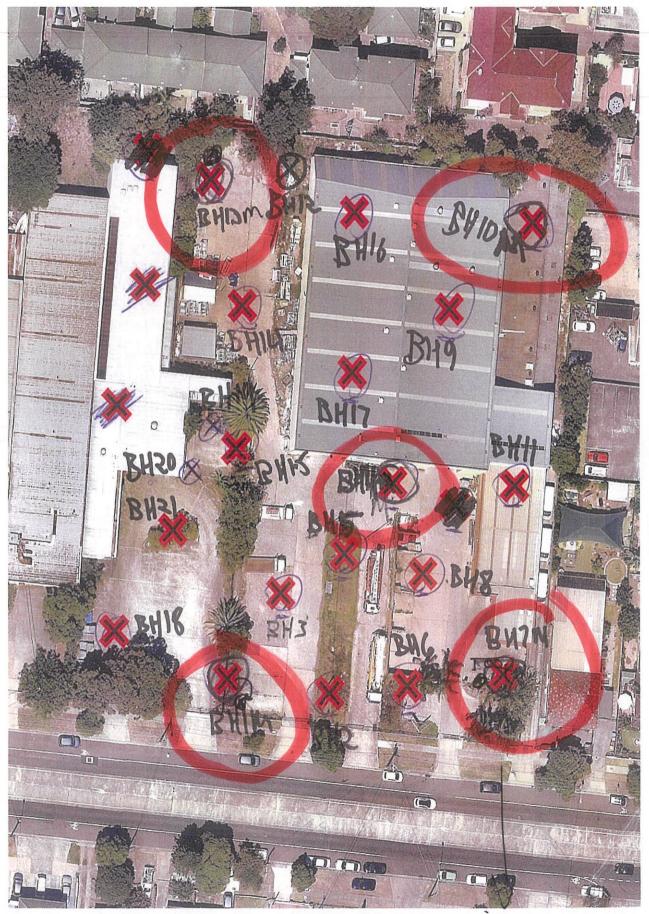
Appendix F– Field Data Sheets

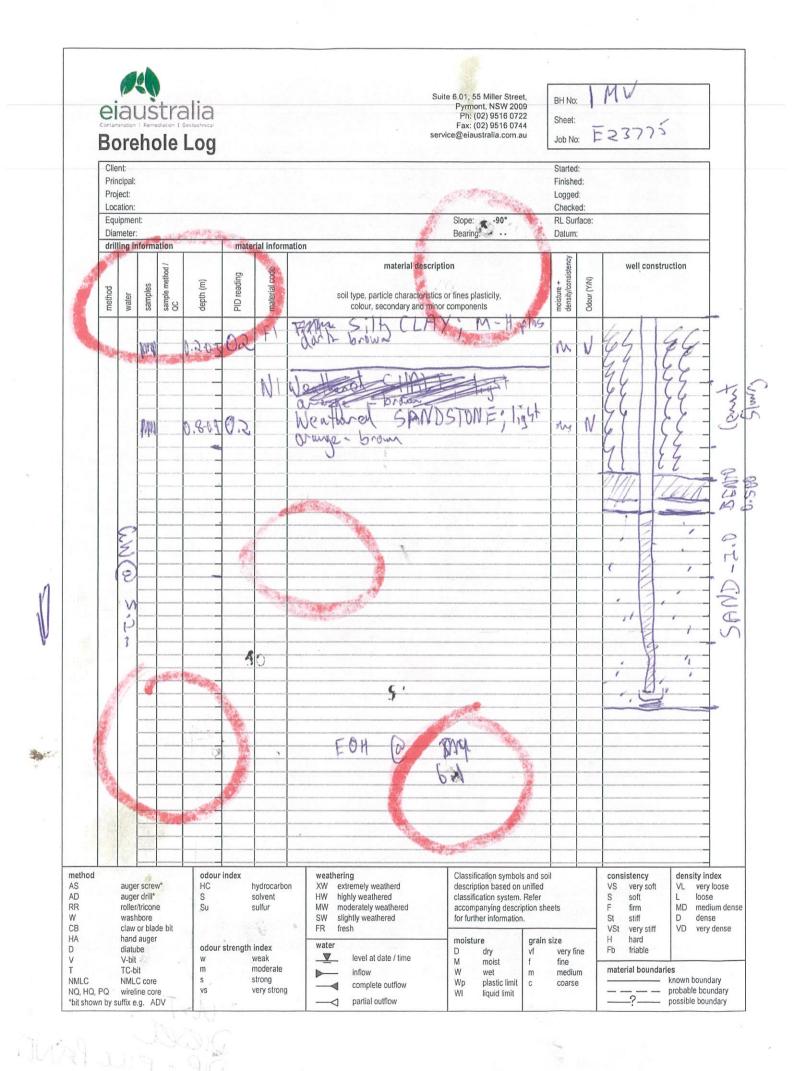
Site Inspection Card - CLM Projects Form OP 005 (Rev 2)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 42 909 129 957 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

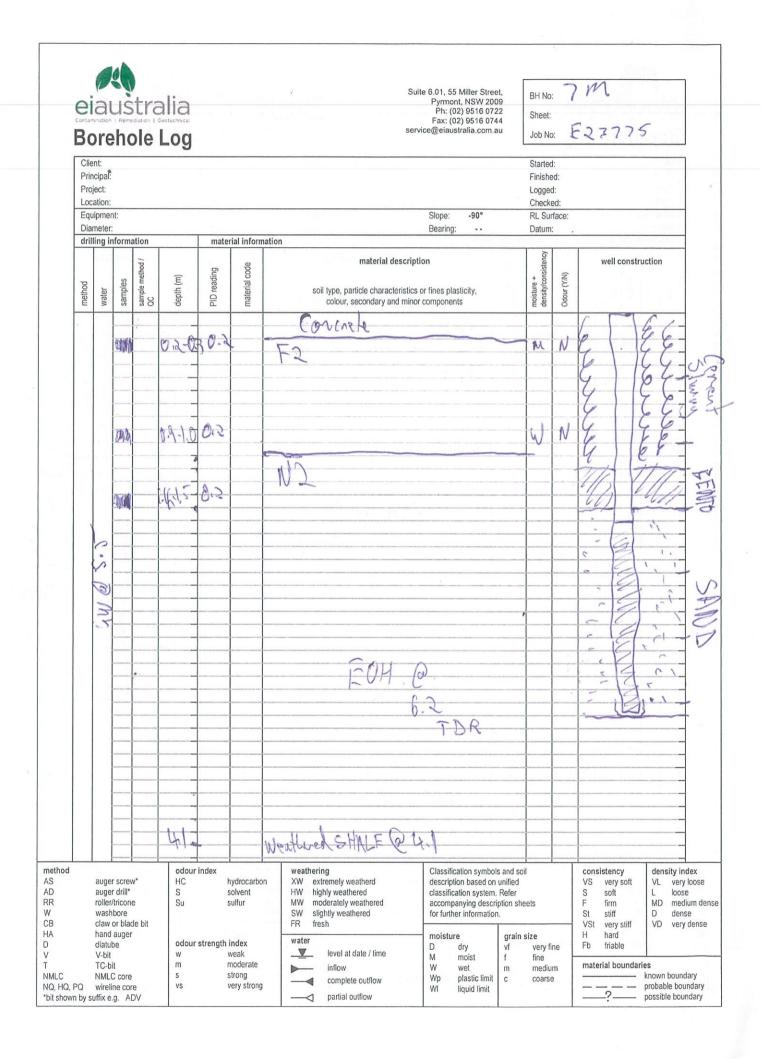
Project Number:	E23775	Engineer Name:	вА
Date:	10-4-18	Time ON Site:	12:30 12:00 20007032
Travel Time:	30 + 30	Time OFF Site:	5.00
Site Address/Location: 33	BRIGHTON	AVE, CROYDON PARK	
Climatic Conditions: OVER			
Current Site Uses: Comm	ORCIAL + INI	DUSTRIACA - MORTON	A UNIL DREUFD THNIES W/ S
5	KITCHEN St	ONE BENCHTOPS.	OPERATIONS IN THE KITCH
Surrounding Land Uses:	AAA		
North: REIDENTIAL	AARTMENTS	· · · · · · · · · · · · · · · · · · ·	2 CARGE HOISIS
South: BRIGHTON A East: COMMERCIAL		D BY COMMERCIAL	- GENERATURS + PUDIPS
West: COMMERCIA	`,		
Current Site Condition			
Buildings Structures:			
🗹 slab on ground 🗆 su	spended slab	□ basement Level(s)	□ sub-stations □ service pits / sumps
🗆 potential ACM 🗆 po	tential lead paint	accessible soils (locations)	
□ Other (please decsribe):			
Soil / Vegetation (overgrown, d <i>MOST VEGETHING</i> Condition of concrete, bitumen	roading, flooring e	tc.:	
PATCH WORK, CH	AULING, DE	FORMITY ACROSS SIT	E — AVERAGE.
Evidence of USTs / UPSS Infra	-		
YES - DIESE	A (SE a	ORNER OF SITE)	
Evidence of Groundwater Moni	itoring Wells:		
Presence of Waste / Rubbish /	Stocknilse		
		WAREHOUSE WASTE	E IN NE CORNER
Unusual Odours:			
Signed:		Name:	Date:
- Silver		Humo,	Duto.


Site Inspection Card - CLM Projects Form OP-005 (Rev 2)

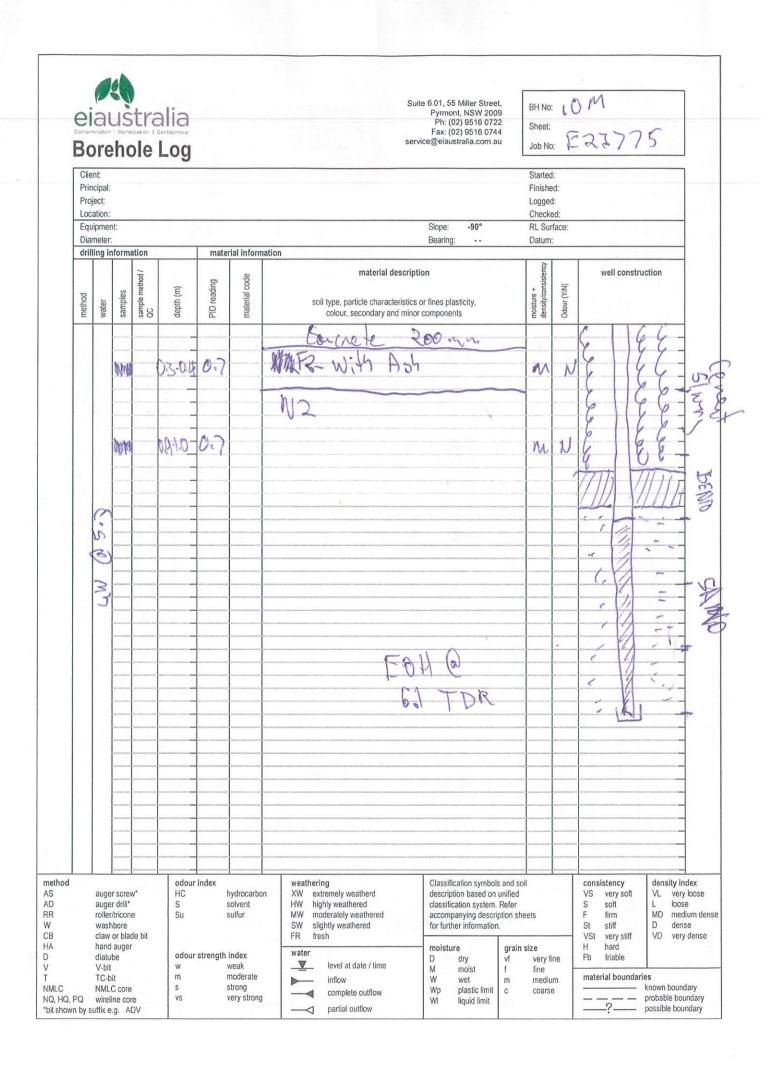

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 42 909 129 957 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

Site Topography (slop	e of site, surface water, dr	ainage, closest receptor etc.)	623775 Maria Maria	
SCOPING	EAST	. (+f)		
50071000		54:41	8) - Y - 0	
		00:0	30 + 20	
			33 BRUGHTON AVE, GRO-	1996.) - Toor - 양신 Alian
			lous materials, infrastructure)	
-> UN LABE	WED TANKS	W/ SOLUTION -	HONCED al & Rumper	FOR
OPERAT	TONS IN THE	LITCHEN STONE	WAREHOUSE. BHOTIS P	
> LARGE M	HOISTS		C AMARINGENTS	REDEVIA
-7 GENERATU	RS + PUMPS	MOCAAL	i AVE POLLINED BY OM	BRIGHTON
Anecdotal Information	<u>):</u>		LAC/WOMSHING	ASMANO
			CAPE / MPUSTRIAC	Serving)
Notes:				
	Share Barrow of	and a second		and the second strend and
		7 - 312 - 1212/2447 3	HAAN CMEAN SURGE	19791 19911
			a star i se de se se se	
	AVERALLE.	ACKOS SAE -	ARDENG DEFAMILTY	PATTHENERGE
		1	ESEL ISE ORNER	G Dav
		(and)	- Yanno añ hara	10- 091
			Jun Se A	n Maran Maran
	NE manipal	ale allant M	and the set of the state	startles 1) 2
	NOAMO 3M	AN OPERAL OFF	EULPHIDUT TUMPEN	UNUSED 6
				and the state
Signed:		Name:	Date:	



UST DIESEL DIP + FILL PRINTI



Pro Loc Equ	cipal:							x	Finish Logge Checl	Started: Finished: Logged: Checked: RL Surface:				
		forma		1	mater	ial informa			Bearing:				*	-
method	water	samples	sample method / QC	depth (m)	PID reading	material code	soil type, particl	aterial descript characteristics ndary and mino	or fines plasticity,	moisture + density/consistency	Odour (Y/N)	well const	ruction	
		dRut		02-0.3	0.3		F2					69	66-	
				0.1-10	0.4		N2					July Charles	24	CRI CRI
							E e .	~ ~ ~				TIT	Mut.	REN 2
							TON	(°) 6	.0 TDR ·					4
														Sf
				4										-5
۰.				- *			•	· · ·]]	- 6
									*					-
														-
	auge	er screv er drill*		odou HC S Su	5	nydrocarbon solvent sulfur	weathering XW extremely weath HW highly weathere MW moderately wea SW slightly weather	d Ihered	Classification symbols description based on classification system. accompanying descrip for further information	unified Refer otion sheets	-	consistency VS very soft S soft F firm St stiff	L loos	y loose se dium dense

" Stat

dil.

Client: Started:											23725			
Pri Pro Loc Equ	icipal: ject: ation: uipme		,					Slope: -90°	Finishe Logge Check RL Su	ed: d: ed: rface:	11			
-	meter ling i	nform	ation		mater	ial informat	ion	Bearing:	Datum					
method	water	samples	sample method / QC	depth (m)	PID reading	material code	material descriptio soil type, particle characteristics of colour, secondary and minor of	fines plasticity,	moisture + density/consistency	Odour (Y/N)	well constru	uction		
		an		0.5-0.4		-	For Inetic 200m		m	N	6611	66-		
		-		0.1.1.0		1	Newtonel SANDSTO	NE	M	N	60	66-	Cump	
				20-	*		Mana silh FLAY; oranje mottled grey	L-mplus,			1000			
	CW W			3.0 -			SHALE						DFm	
	51.0			4.0			9 - 2				4		-	
			1999 - 1999 - 1999 - 1999 1999 - 1999 - 1999 - 1999 1999 - 1999 - 1999 - 1999 1999 - 1999 - 1999 - 1999	12 5.1 a								e c	-	
		A	****	6,0 -	641				M	MHC			1	
							Refusal @ 6.	4				2		
	auge roller wash claw	r screv r drill* /tricon bore or blac auger	e de bit	odour HC S Su	ł	ydrocarbon olvent ulfur	weathering XW extremely weatherd HW highly weathered MW moderately weathered SW slightly weathered FR fresh	Classification symbols and description based on unifie classification system. Refe accompanying description for further information.	ed er sheets		consistency VS very soft S soft F firm St stiff VSt very stiff H hard	L loos MD med D dens	/ loose e lium de	
	diatu V-bit TC-b	be		odour w m s	r	ndex veak noderate trong	water Vertex level at date / time Inflow Complete outflow	moisture grading D dry vf M moist f W wet m Wp plastic limit c	ain size very f fine mediu coars	ım	H naro Fb friable material boundar	ies known bound	darv	

WATER SAMPLING FIELD SHEET

								Judocialia			
			HTON A	NE, CRO	yoon (A	hrn		ber: £73775			
Client:	DYLDAN	n					Date: 10	-4			
Field Staf	f: BA						Sampling	Location ID BHIM			
Well Loca	ation: 3H	1m - 3	see fil	12			Round No: 1				
MEDIUM		X	Groundwa	ater 🗆 🛙	Surface W	ater	□Stormv	vater DOther:			
SAMPLIN	IG POINT	INFO					100	1			
Well Insta	allation Da	te:					Stick up	down (m): O. In (+above ground - below ground)			
Initial We	ll Depth (n	nBTOC):	6.0		Screen In	nterval (mBTOC): 3.0-6.0					
Previous	Sampling	Date: NA						SWL (mBTOC): NA			
PID REA	DINGS										
PID Head	lspace (pp	om):	AL A				PID Back	(ground (ppm): NA			
	thing Space		1071								
PRE PUF	and the second se										
Total We	ll Depth (m	BTOC):	6.00 m				Well Hea	ad Condition: 6000			
SWL (mE	TOC):	.40.00						olumn (m): 4.60			
			OCARBON	NS (PSH)							
	PSH (mBT						PSH Vier	ually Confirmed (Bailer): NA			
	kness (mr										
	ND SAMI		r .								
			Bladde		Devictor	ia –	Culture .	hla DOthar			
Sampling					□Peristalt		Submersi				
				4.1			Fill Timer				
	essure Reg						Discharge Timer: 20				
	Conditions		LUAST				Cycle: CM2				
	time: 12						Pump off	time:			
	QUALITY		TERS								
Probe Ma	ke and Mo			1			Bump Te	est Date and Time:			
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DØ (mg/L)	pH (units)-				
12:30	0.5	1.4	23.54	8452	170.4	1.72	5.82	H. TURB, LIGHT BROWN, NO DOUR,			
12:40	1.0	1.8	23.64		176-0	1.63	5.78	No SHEEN			
12:42	1.5	2.2	23.13	8396	(80.8	0.69	5.77				
12:44	20	2.4	23.50	8374	182.7	0.63	S.75				
12:46	2.5	2.6	23.70	8353	186.1	1.58	5.74	LOW- V			
12:48	3.0	2.8	23.63	8324	188.7	0.99	5.75	MOD TURB.			
					e de						
					1 . A.	1					
					2.5						
Stab	ilisation ra	ingo:									
			±0.2°C	±3%	±20mV	±10%	±0.2				
Lead out the stand Day of the	ecutive re	and the second sec									
OTHER C	OMMENT	S/OBSEF	RVATIONS					S. Wet			
			GWQI)	GWAT	4					
				1							
SIGNATU	IRE: DA	F.	0								
	0	1.						30			

Z:\11 - Templates\Field Forms_Worksheets\Water Sampling Field Sheet 2015\Water Sampling Field Sheet Rev1 20150604 - BAedit

	R SAMPLIN		•	eiaustralia					
Site Address: 33 BAILHT	N AVE. (1	MODE	PARK		Job Number: <i>E13775</i>				
Client: DYLDAM	in the population	n (Qata			Date: 10-4-18				
Field Staff:					Location ID BH4M-				
Well Location: 6H4M - S	P. F167			Round No					
	Groundwate	er 🗆 S	urface Wa	□Stormw					
SAMPLING POINT INFO									
Well Installation Date:					Stick	down (m): O. (+ down - below ground)			
Initial Well Depth (mBTOC):	61 5.	9				terval (mBTOC): 2.9-5.9			
Previous Sampling Date:		/				SWL (mBTOC):			
PID READINGS					rionodo				
PID Headspace (ppm):	A (()			PID Back	ground (ppm): NA			
PID Breathing Space (ppm):	- NH	e			T ID Duok				
PRE PURGE									
Total Well Depth (mBTOC):	5.9				Well Hea	d Condition: 6890			
SWL (mBTOC): 0.7									
PHASE SEPARATED HYDI	ROCARRON	S (PSH)							
Depth to PSH (mBTOC):		0 (1 011)			PSH Visu	ally Confirmed (Bailer): NO			
PSH Thickness (mm):	NA								
PURGE AND SAMPLE									
					0				
Sampling Method	Bladder	· L]Peristalti	с Ц	ISubmersible				
Depth of Pump Inlet (mBTO				ас. -	Fill Timer: 2 0 Discharge Timer: 1 0				
Pump Pressure Regulator (
Weather Conditions: 0Ve	kchsi					CPM2			
Pump on time: 2.35					Pump off	time: 2.55.			
WATER QUALITY PARAMI	ETERS		1						
Probe Make and Model:					Bump Te	st Date and Time:			
Time Volume SWL (L) (mbtoc	Temp) (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units) Comments (colour, turbidity, odour, sheen etc.)				
2:37 0.5 0.71	25.67	9900	180.3	0.52	5.01	HIGH TURB, BROWN-LIGHT BROWN,			
2:39 1.0 0.71	25.59		204.9	0.49	4.62	NO SHEEN, NO ODJUR			
2.41 1.5 6.81	25.54	9938	2747	0.1%	4.50	1			
2:43 2.0 0.81	~ .	9960	230.4	0.18	4.42				
2:45 25 0.91	24-13	4954	784.6	0.15	4.37				
2:47 3.0 0.91	24 15	1920	126.9	0.00	4.33				
2:49 3.5 1.0	1 20.60	2905	177.7	0.00	4.31				
	24.59	anaz	239.3	0.00		V/			
2:51 4.0 1.01	2901	1015	238.3	0-00	4.30	9			
Stabilisation range:	±0.2°C	±3%	±20mV	±10%	±0.2				
3 consecutive readings						· · · · · · · · · · · · · · · · · · ·			
OTHER COMMENTS/OBSI	ERVATIONS	:							
SIGNATURE:									

		WATER	SAMPLI			eiaustralia					
	22	Anche	INC	R 0 100	1 Annie						
Site Addr		DRIGHT	W AVE,	CROYUN	VMKR		Job Number: 627775				
Client:	DYUDAI	n					Date: 10-4-18				
Field Staf						Location ID 6H7M -1					
	ation: BH				Round No						
MEDIUM		A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OF THE OWNER OWNE	Groundwa	ter 🗆 S	Surface W	ater	□Stormw	vater DOther:			
- Andreas Contract	IG POINT		1								
	allation Da					((()) · (() · ()					
-	ll Depth (n		6.1					nterval (mBTOC): 🎢 3-/-6-/			
	Sampling	Date:					Previous	SWL (mBTOC): NA			
PID REA	DINGS										
	lspace (pp		1/A				PID Back	ground (ppm): NA			
PID Breat	thing Spac	e (ppm):	NA								
PRE PUR	RGE										
Total We	ll Depth (m	BTOC):	SA 6.	1				d Condition: (100)			
SWL (mB		11.25					Water Co	olumn (m): 4.85			
PHASE S	EPARATE	D HYDRO	OCARBON	IS (PSH)							
	PSH (mBT		AIA				PSH Visu	ually Confirmed (Bailer): No			
PSH Thic	kness (mr	n):	1071								
PURGE A	AND SAMI	PLE									
Sampling	g Method		Bladde	er l	Peristalt	ic 🗆	ISubmersi	ble DOther:			
Depth of	Pump Inle	t (mBTOC): 3.	в			Fill Timer	: 20			
Pump Pre	essure Reg	gulator (ps		<u> </u>			Discharg				
	Conditions							cpm2			
Pump on		:38					Pump off	time: 4:55			
_	QUALITY		TERS								
	ke and Mo						Bump Te	st Date and Time:			
	Volume	SWL	Temp	EC	Redox	DO	pH				
Time	(L)	(mbtoc)	(°C)	(µS/cm)	(mV)	(mg/L)	(units)	Comments (colour, turbidity, odour, sheen etc.)			
4:40	0.5		24.21	16550	189.5	0.64	5.75	ADOD-HIGH TURB, ULLHT BRANN, NO			
4:42	1.0		24.17	10490	182.9	057	5.39	OPAUL, NO SHEPN.			
4:44	1.5		24.25	10510	190.8	0.69	1 21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
4:46	2.0		24.25	10510	192.0	0.69	5.33	t l			
4:48	2.5		24.27	10480	193.5	0.68	5.37	LOW-MOD TURB			
4:50	3.0		61-1	10 100	1100	0.00					
4.52	3-5						~~				
4:54	4.0										
1.01	10										
Ctab	iliootion	ngoi									
	ilisation ra		±0.2°C	±3%	±0.2						
C. LINES, MERCENCOLOURS	ecutive re										
		5/OBSEF	RVATIONS								
SIGNATU	JRE:										

WATER SAMPLING FIELD SHEET

014-0-1-1-	10	0 41/117	501 A11	7 0.00	ALDODAL L	onte		Claustialia			
Site Addr	ess: 65	BRIGHI	on Avi	of CRO	VIUN P	Job Number: 623775					
	YLVA	11/					Date: 10-4-18				
Field Staf			C				Sampling Location ID BHOM-				
			SEE F				Round No: 1				
MEDIUM	the same state of the same state		Groundwa	ter 🗆 S	Surface Wa	ater	□Stormw	vater DOther:			
	IG POINT										
	allation Da						down (m): O. ((about the below ground)				
	ll Depth (n		6.0				nterval (mBTOC): 6.0-3.0				
	Sampling	Date:					Previous	SWL (mBTOC):			
PID REAL											
	lspace (pp	,	NA				PID Back	ground (ppm): NA			
	thing Spac	e (ppm):	1011								
PRE PUR								8			
Total Wel	ll Depth (m	BTOC):	6.0		12			d Condition: GOOP			
SWL (mB).9				Water Co	blumn (m): 5·1			
PHASE S	SEPARATE	ED HYDRO	OCARBON	IS (PSH)							
Depth to I	PSH (mBT	OC): N	A				PSH Visu	ually Confirmed (Bailer):			
PSH Thic	kness (mr	n): N	4								
PURGE A	AND SAME	PLE						0			
Sampling	g Method		□Bladde	r l	□Peristalti	с 🗆	Submersi	ble DOther:			
Depth of I	Pump Inle	t (mBTOC): 4.0			1. 1.67	Fill Timer	20			
	essure Reg					1.	Discharge Timer: (O				
	Conditions					1.1	Cycle: CPM2				
	time: 3.3					3	Pump off time:				
And the Owner wanted to be a set of the owner	QUALITY	and the second se	TERS			e 1					
	ke and Mo				l.	adjuni	Bump Te	st Date and Time:			
	Volume	SWL	Temp	EC	Redox	DO	pH				
Time	(L)	(mbtoc)	(°C)	(<i>µ</i> S/cm)	(mV)	(mg/L)	(units)	Comments (colour, turbidity, odour, sheen etc.)			
3:40	0.5	8/1.0	22.06	1(850	151.1	0.86	5.58	MOO - HIGH TURB, UGHT			
3:42	1.0	1.2	21.55	1(870	145.1	0.70	5.46	MOO-HIGH TURB, LIGHT BROWN, NO DOOUL, NO			
3144	1.5	1.3	21.30	11860	143.1	6.49	5.38	SHEEN			
3:48	2.0	1.Y	21.15	11850	141.7	0.32	5.38				
3:48	2.5	1.5	21.11	11840	140.2	15.0	5.34				
2:50	3.0	161.6	21.07	11850	139.3	0.15	5.34				
3:52	3.5	1.7	21.05	1023 10	137.9	0-11	5.33	J N			
2:54	4.0	1. 1	AI VO	11870	101.0	01.					
001	70	2									
3		and and a second se									
	*										
	1	1									
		-						3			
					64	/					
	1						9				
Stab	ilisation ra	inde.									
Standard Constants	secutive re		±0.2°C	±3%	±20mV	±10%	±0.2				
1111000-0000000000000000000000000000000			RVATIONS				L				
UTHER		3/08255	VATIONS	9				inut.			
SIGNATU	JRE:										
	1999-1995 - 1995 - 1										

WATE	ER SAMPLIN	IG FIELD	SHEET		2	e	eiaustralia		
Site Address: BRIGH	170N AVE,	CROY	ON PAG	LK	Job Num	per: 123775			
Client: D-LOAM		01001			Date: 10-4-18				
Field Staff: 6A					Sampling Location ID 6H/3M-				
010	- SEE FI	6.2	Round No: /						
MEDIUM	Groundwat	and the second se	Surface Wa	ater	□Stormw				
SAMPLING POINT INFO	Ronoundina								
Well Installation Date:					Stick u	down (m): 🖸 • 1	(+ provide the selow ground)		
Initial Well Depth (mBTOC	. 6.2						-6.3		
Previous Sampling Date:						SWL (mBTOC):	05		
PID READINGS					I TOVIOUS	6WE (IIIB100).			
PID Headspace (ppm):					DID Back	ground (ppm): NA			
	NA				FID Dack	ground (ppin).			
PID Breathing Space (ppm PRE PURGE).								
	1.2				Woll Liss	d Conditions / AAA	·····		
Total Well Depth (mBTOC)	6.3					d Condition: 6000			
SWL (mBTOC): 0.6	DOCADDON				water Co	lumn (m):			
PHASE SEPARATED HYD		5 (PSH)			DOLLA		1.		
	NA				PSH Visu	ally Confirmed (Bailer):	NO		
PSH Thickness (mm):	NA								
PURGE AND SAMPLE									
Sampling Method	Bladde		□Peristalti	c 🗆	Submersi				
Depth of Pump Inlet (mBT		145 9	1.5		Fill Timer				
Pump Pressure Regulator					Discharge	e Timer: 10			
Weather Conditions: 016	AGAST				Cycle:	cpmil			
Pump on time: 1:45					Pump off	time: 2:05	1		
WATER QUALITY PARAM	IETERS								
Probe Make and Model:					Bump Te	st Date and Time:			
Time Volume SWI (L) (mbto		EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	(units)			
1:47 0.5 0.8	23.99	11870	-9.5	0.35	6.48	MOD-HIGH TU	RB, LIGHT BROWN		
1:49 1.0 0.8	22.17	11900	375	0.0	6.42	NO OPOUR, NO	SHEEN		
1:51 1.5 0.9	22.06	11910	-1.9	0.0	6.42	3	1		
1:53 2.0 0.0	22.06	11890	0.5	0.0	6.34				
1:55 2.5 1.0	21.96	11970	2.5	0.0	6.30				
1.57 3.0 1.0	22.10	11860	-2.4	0.0	6.33	1/	4		
1:57 3.0 1.0	22.2	11910	-4.4	0.0	6.35	V	N		
1.51 5.5 1.1	Jap 20	11110		060	6.35				
		2							
Stabilisation range: 3 consecutive readings	±0.2°C	±3%	±20mV	±10%	±0.2				
OTHER COMMENTS/OBS	SERVATIONS	:							

Appendix G– Chain of Custody and Sample Receipt Forms

Sheet	of	5			San	nple I	Matrix									Ana	lysis							Comments
Site: 33	Bing	hton Av.	e F	Project No:													(y)							_{НМ} А
Site: 33	lon Pi	ard	E	23775			it, etc.)	AI Is stos	AHs							change)	onductivit							Arsenic Cedmium Chromium
	ALEXAN	stralia 33 Maddox S IDRIA NSW 2 94 0400 F: 02	2015	1			OTHERS (i.e. Fibro, Paint, etc.)	HIM A /TTRH//BTEX/PALts OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM Å /TRH/BTEX	TRH/BTEX/Lead	EX			ş	pH/CEC (cation oxchange)	pH/EC (electrical conductivity)	10			silv	V W	M <u>B</u>	Copper Lead Meroury Nickel
Sample	Laboratory		Sam	pling	WATER		HERS		1/ V I	1/ V 1	I I/IBT	TRH/BTEX	PAHs	VOCs	Asbestos	/ CE	/EC	sPOCAS	Hold		TCLP PALIS	rcl.P.HM	TCLP HM B	Zinc
ID	ID	Туре	Date	Time	+	SOIL	1 EO	₹0 E0	-IP	- N N	Ĕ	Ĕ	Vd	×C	As	Id	ŀłd	ds	Ŧ		10	101	10	HM <u>B</u> Arsenic
BHIM.020:	1	I ZUB	19-3-18	AM/PM		×		×																Cadmium
BH1M_0.8-0.9	2							1	×		-													Chromium Lead
B12_0.2-0.5	3							x																Marcury Nickel
BH2.0.40.5	-																		x					
843_030.4								×																
BH3 0.9-1.0	10										r								X					
Billyn_0.2-0.3	-5							X																X tarrar
BH4M_0.9-1.0	- 1												*						X					- <u> </u>
BHT_0.3-04								X																
PH2 0910																			×					
BH6.0,203	7							×																
B 16_0.9.1.0		*	¥	¥		4													×					
Investigator: I	attest that	at these samp	les were co	llected in a	ccorda	ance	Samp	ler's Na	me (El)	:			Recei	ived by	(SGS):							. A.		
v	vith stand	ard El field sa	ampling proc	edures.					me)														
Sampler's Co	mment	SGS EHS	Alexandria	Laborato	ry		Prir	mto	hell	A	nle		Pri	2	p	~				-	~	0	4.	
							Sign	ature	MA	MA	-		Sign	ature	2er	A	2			Contar	dL	15	LI (tation	Geotec mical
Container Type J= solvent wash		SE17	7041 C				Date	2	0-2	-18)		Date	-s	5	10	0	10			5 Miller	Stree	t, PYR	MONT NSW 2009
S= solvent wash P= natural HDPR	ied, acid E plastic		: 21 – Mar -											7	H	6		///	9				6 0722	
VC= glass vial, 71 R = 7in-l ock	Teflon Se, Rag					/	o'eas	8 9 - 17	eil Iabs	vision	/1995	19 10:												COC 10/2016 FORM v3-SGS

Sheet 2	of	5				San	nple l	Matrix	(·			Ana	lysis		9949-24-12-04-12-12-12-12-12-12-12-12-12-12-12-12-12-	4				Comments
Site: 31	Bright	on Are		Pro	ject No:	<u> </u>	İ	Ι	\uparrow				1				1	Ī				Τ	1	1	A
Site: 31 Crozda	Pav	K NSI	W	Es	13775			t, etc.)	AHs stos	VHs							change)	onductivity							HM <u>A</u> Arsenic Cadmium Chromium
Laboratory:	Unit 16, ALEXAN	stralia 33 Maddox IDRIA NSW 94 0400 F: 0	2015	499				OTHERS (i.e. Fibro, Paint, etc.)	HM ∆ /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM Å /TRH/BTEX/PAHs	HM Å /TRH/BTEX	TRU///3TEX/Lead	EX			s	pH1/CEC (cation exchange)	pH1/EC (electrical conductivity)	0			AI Is	M A	M B	Copper Lead Meroury Nickel
Sample ID	Laboratory ID	Container Type	s	Samplin	ng	WATER	F	HERS	M A N CP/OI	M A /r	M A /T	311/137	IRH/BTEX	PAHs	VOCs	Asbestos	I/ CE	17EC	sPOCAS	Hold		TCLP PALIS	TCLP HM A	TCLP HM B	Zinc
			Date		Time		SOIL	OT		Ξ_	Ξ	F	=	à	×	š.	đ	pŀ	50	I		Ĕ	<u> </u>	Ŭ	HM ^B Arsenic
BHTMORO		2,212	19-3-	18	AMIPA	<u> </u>	\propto	ļ	×													ļ			Cadmium Chromium
BH7M.0.9.10							1													X					Lead
F12W-1.4-1.5	q				_				* :: 	X											_				Mercury Nickel
FNB 0:2-0.4	10								X																
5H8.0.9-1.0																				X					
PHJ 0.2-0:0	1								X																
BH9_0,9-1,0	:																			X					Stancart
BH9_1.5-1.6																				\times					
BHION 0.50	412								×	X							r#								
BHIOM 0.9-1.0	13								3	X															
BH11_0.50.4	14								X																
BHII 0.9-1.0		*			-		-													X					
Investigator: I	atteat the	t those same			tod in o			Samp	ler's Na	me (EI)	:			Recei	ved by	(SGS):				-			<u>h.</u>		
		ard El field sa				COIUE	ince			MD					÷						6	90			
Sampler's Co	mments:							Prir		hall	D	10		Prin	7	20					78		0.		
a and								Sign	ature	ma	++	No		Sign	C/	10	$\widehat{\mathbf{x}}$			į	ela	IJE	S	Īľć	Bila
Container Type						Date	7	0-7	-18	>		Date	1h	A	2-				Containina 01 55 M		Remedi Strept		Geotechnical NONT NSW 2009		
J= solvent wash S= solvent wash	ed, acid rins	sed glass bottle		R					X	0-5	212	2		4	Ş	18	IE I	11	Ce)		01, 00 N			0722	
P= natural HDPE VC= glass vial, 1 71 B = 7in-Lock I	Feflon Septu				Pleas	e e-mi	el lanc	ratoni	n re su li	18 101								5	::::		:::-				

Sheet 3	of				Sar	nple l	Matrix	c								Ana	lysis		and any street have				20.2.3	Comments
Site: 33	Brish	ton Are	,	Project N	o:				1	Ι		1					y)				1	Τ		HMΔ
site: 33 Croydo	r Ph	h NSW	F	2377	5		t, etc.)	AI Is tos	VI-Is							change)	nductivit							Arsenic Cedmium Chromium
Laboratory:	ALEXAN	stralia 33 Maddox IDRIA NSW 94 0400 F: 0	2015)			OTHERS (i.e. Fibro, Paint, etc.)	HM ≜ /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM Å /TRH//BTEX	TRH/BTEX/Load	EX			S	pH1/CEC (cation exchange)	pH / EC (electrical conductivity)				AI Is	V W	M B	Copper Lead Maroury Nickel
Sample	Laboratory		Sam	pling	WATER		IERS	NOID	1/ 1/	IV VI	H/BT	FIRH/IBTEX	PAI-Is	VOCs	Asbestos	/ CE	/EC	spocks	Hall		TCLP PAHs	FCLP HM A	TCLP HM B	Zinc
ID	ID	Туре	Date	Time		SOIL	Ĕ0	ΞÖ	E	HIN	Ĕ	Ĕ	νd	NC VC	Asl	Hd	pHd)clS	Ž		10	TC	TC	HM ≧ Arsenic
BH12_0.506	15	2.572	19-3-12	3 Am/	on	X		X																Cadmium
BH121.0-1.1		1	4	1															X					Chromium Lead
BHISM 0.5	2.14 16		20-3-18					X																Mercury Nickel
BH13M.0.91!	17				1				X															
BHIJM_SS.	18								X															
BHU4_0.405	19				1			X													\top			
BH14_11-1.2					1			-/											×					
17 HIS -0.3-01	20				1			×																🗹 Slandard —— I
BH15.0.9-1.0					1-														x					
PH16_0.4-0.3	21							X											· \		+			
BH16297.0														_					×		+			
BH16.144.6		-	4		+														8		+-			
	<u> </u>		1			1	Samp	ler's Na	me (EI)):			Recei	ved by	(SGS):							<u>A.</u>		
Investigator: I w		ard El field sa	accord	ance		r	nD												690					
Sampler's Co	mments:		•				Prin			DI			Prin	t						=	0.0	0.0		
							Sign	ature n	well.	The	in		Sign	ature	24	2				el	au	S	Tc	alla
Container Type	ainer Type: Nvent washed, acid rinsed,Teflon sealed, glass jaR								when	2			Date	Ú	r	X	-		Quito	Contamin				Geotechnical NONT NSW 2009
S= solvent wash	ed, acid rins	ed glass bottle					Date	2	9-5	-18			2	9	3/12	2	2/.	:20	Duile	0.01, 00		9516		10141 14347 2009
P= natural HDPE VC= glass vial, T ZLB = Zip-Lock E	eflon Septu	le m			Pleas	8 9-M	sil lac:	oratori	195.	18 10:								3	11 <u>2</u> 93		3 .: -	COC INVOICEODMUS COS		

Sheet	of	5				San	nple I	Matrix	Γ								Ana	lysis				ajpen aver		4 444	Comments
Site: 3] Croyd	Bria on F	ston 1	Ava NSW		oject No	-		etc.)	uls 21 os 21	Hs L								Í							HM ^A Arsenic Cadmium
Laboratory:	ALEXAN	stralia 33 Maddox IDRIA NSW 94 0400 F: (2015	0499				OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	HM A /TTRH/BTEX	TRH/BTEX/Lead	EX			S	pH / CEC (cation exchange)	pH/EC (electrical conductivity)	0			Alls	M A	MB	Chromium Copper Lead Mercury Nickel
Sample ID	Laboratory ID	Container Type	Dat	Sampli te	ing Time	WATER	SOIL	OTHERS	HMA / OCP/OI	HM A /H	HM A /I	TRUMBT	TRUMB TEX	PAHs	VOCs	Asbostos	pH/CE	pH/EC	sPOCAS	Hald		TCLP PALIS	TCLP HM A	TCLP HM ^B	Zinc HM ^프
BH17,050	22	3,218	20-3.	-18	AM/Pn	1	X		X																Arsenic Cadmium
1-1-01_51KZ	23	1	1		1		1		200 E.	×												1			Chromium Lead
BH17, 1.5-1.6	24									×										-					Mercury Nickel
5×18_0.7-06	25						11		X													-			Nicke:
J. HA _ 0.5-0.6	26								×													1			
	-					1														×					
BNA 10-1.1 B1R0.0,40.5	27					1			×																7
BTP0_10-1.1																				×					<u>X</u>
FIR 0.4-05	28	¥	1						X																
QDI	29	2	19-3-	18			-				×											+			*** *** *
QRI	30	5. F. 2.xV	0-			X					×														
QR81		-	*		4	×														X					
Investigator: I w		t these sam ard El field s				L	ance	Sampl	er's Nar	ne (EI)	l			Receiv	ved by i	(SGS):						50		1	
Sampler's Co	mments:		i badina					Prin		611	D.	lau		Prip	2	0					. =		0		
					Signa	ature	MA	5	un		Signa	12	ye_ el	- le				<u>e</u>]	BUE	SI		Bila			
Container Type J= solvent wash S= solvent wash P= natural HDPE VC= glass vial, T ZLB = Zio-Lock B	ed, acid rins ed, acid rins plastic bott feflon Septu	ed glass bottl		aR				Date Please	2		3-1 ratory	8	is 101	Date	24	131	8	đ:	æ	Suite	6.01, 55	Miller S	Street, 9516	PYRN 0722	10NT NSW 2009

Sheet 51	🦢 of 📑	5			San	nple N	Matrix							n e filmeliner an anna		Ana	lysis							Comments
Site: 35 Croyd	Brig los Par	L NSW	NR,	Project No:	1		c.)	5								(əɓu	uctivity)							HM ^A Arsenic Cedmium
							int, etc	PALE estos	sHVc							xchai	condi							Chromium
Laboratory:	Unit 16, 3 ALEXAN	DRIA NSW 4 0400 F: 0	2015)			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/IBTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM ^A /FRH/BTEX	TRH/I3TEX/Lead	ΈX			S	pH/CEC (cation exchange)	pH/EC (electrical conductivity)	5			AHs	M A	M B	Copper Lead Mercury Nickel
Sample	Laboratory	Container	Sam	pling	WATER		HERS	1 A 1 2P/01	A A LI	N A LI	81/131	E HIBTEX	PAHs	VOCs	Asbostos	I/ CE	I/EC	sPOCAS			TCLP PAHs	TCLP HM A	TCLP HM B	Zinc
ID	ID	Туре	Date	Time		SOIL	Ê	ΨÖ		VH	É	A	√d	×	As	ā	bt-	ds			1.5	μĔ	1.0	HM ^B Arsenic
QTS	31	VC	20.3-11	s AM/ph	X							X								_				Cadmium
QTB	32	VC	*	*	×							×										÷		Chromium Lead
																								Mercury Nickel
																				1				57
}																								X Glandard
				-																				
				-																				
		·····														-								
					L		Samo	ler's Nar	me (El)				Recei	ved by	(505)									
Investigator:		these samp rd El field sa			ccorda	ance			M						(000).						40			
Sampler's Co	(kinet of						Prir	it on .	4.1.	D	1		Prin	to	7.		~			74	1 de	1		
							Sign	1 vv	rch	U D	>ule	8	6	4	N	UE	-	2				G	- 12	alia
			a na ann an a					ature	M	typ	/		Sigp	Care	L	H	5			Contamina Contamina	A U	l 🥪 l Remedi	at on	Geotecimical
Container Typ J= solvent wasi	hed, acid rinse			Date	1	20-	3-1,	8		Date	20	5/0	3/	20	2/2	Suite 6.	01, 55 N	Ailler S	Street, 9516	PYRN 0722	IONT NSW 2009			
S= solvent was P= natural HDP VC= glass vial,	E plastic bott	e				ſ										0					РП. : 2 ÷ ?	9010	0122	1
71 R = 7in-l ock	Ran Septul	n				1	Pleas	e e-ma	ii labo	ratory	resul	is to:									~			COC 60 2016 FORM V 3-SGS

CLIENT DETAIL	S	LABORATORY DETA	ILS	
Contact	Mitchell Duley	Manager	Huong Crawford	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	mitchell.duley@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E23775 - 33 Brighton Ave, Croydon Park	Samples Received	Wed 21/3/2018	
Order Number	E23775	Report Due	Wed 28/3/2018	
Samples	32	SGS Reference	SE177041	

_ SUBMISSION DETAILS

This is to confirm that 32 samples were received on Wednesday 21/3/2018. Results are expected to be ready by COB Wednesday 28/3/2018. Please quote SGS reference SE177041 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 21/3/2018 Yes 4.1°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 31 Soil, 1 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

Seventeen soil and one water sample have been placed on hold.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS _

Client EI AUSTRALIA

Project E23775 - 33 Brighton Ave, Croydon Park

		OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
No.	Sample ID	ŏ	ð	₽ H	PG	₽₩	μţ	Š	≥ Ļ
001	BH1M_0.2-0.3	29	14	26	11	7	10	12	8
002	BH1M_0.8-0.9	-	-	26	-	7	10	12	8
003	BH2_0.2-0.3	29	14	26	11	7	10	12	8
004	BH3_0.3-0.4	29	14	26	11	7	10	12	8
005	BH4M_0.2-0.3	29	14	26	11	7	10	12	8
006	BH5_0.3-0.4	29	14	26	11	7	10	12	8
007	BH6_0.2-0.3	29	14	26	11	7	10	12	8
800	BH7M_0.2-0.3	29	14	26	11	7	10	12	8
009	BH7M_1.4-1.5	-	-	26	-	7	10	12	8
010	BH8_0.3-0.4	29	14	26	11	7	10	12	8
011	BH9_0.3-0.4	29	14	26	11	7	10	12	8
012	BH10M_0.3-0.4	29	14	26	11	7	10	12	8
013	BH10M_0.9-1.0	-	-	26	-	7	10	12	8
014	BH11_0.3-0.4	29	14	26	11	7	10	12	8
015	BH12_0.5-0.6	29	14	26	11	7	10	12	8
016	BH13M_0.3-0.4	29	14	26	11	7	10	12	8
017	BH13M_0.9-1.0	-	-	26	-	7	10	12	8
018	BH13M_5.5-5.6	-	-	26	-	7	10	12	8
019	BH14_0.4-0.5	29	14	26	11	7	10	12	8
020	BH15_0.3-0.4	29	14	26	11	7	10	12	8
021	BH16_0.4-0.5	29	14	26	11	7	10	12	8
)22	BH17_0.5-0.6	29	14	26	11	7	10	12	8
023	BH17_1.0-1.1	-	-	26	-	7	10	12	8
024	BH17_11.6	-	-	26	-	7	10	12	8

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E23775 - 33 Brighton Ave, Croydon Park

SUMMAR	Y OF ANALYSIS	 							
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
025	BH18_0.5-0.6	29	14	26	11	7	10	12	8
026	BH19_0.5-0.6	29	14	26	11	7	10	12	8
027	BH20_0.4-0.5	29	14	26	11	7	10	12	8
028	BH21_0.4-0.5	29	14	26	11	7	10	12	8
029	QD1	-	-	-	-	7	10	12	8
031	QTS	-	-	-	-	-	-	12	-
032	QTB	-	-	-	-	-	-	12	-

_ CONTINUED OVERLEAF

__ CLIENT DETAILS __

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	BH1M_0.2-0.3	2	1	1
002	BH1M_0.8-0.9	-	1	1
003	BH2_0.2-0.3	2	1	1
004	BH3_0.3-0.4	2	1	1
005	BH4M_0.2-0.3	2	1	1
006	BH5_0.3-0.4	2	1	1
007	BH6_0.2-0.3	2	1	1
008	BH7M_0.2-0.3	2	1	1
009	BH7M_1.4-1.5	-	1	1
010	BH8_0.3-0.4	2	1	1
011	BH9_0.3-0.4	2	1	1
012	BH10M_0.3-0.4	2	1	1
013	BH10M_0.9-1.0	-	1	1
014	BH11_0.3-0.4	2	1	1
015	BH12_0.5-0.6	2	1	1
016	BH13M_0.3-0.4	2	1	1
017	BH13M_0.9-1.0	-	1	1
018	BH13M_5.5-5.6	-	1	1
019	BH14_0.4-0.5	2	1	1
020	BH15_0.3-0.4	2	1	1
021	BH16_0.4-0.5	2	1	1
022	BH17_0.5-0.6	2	1	1
023	BH17_1.0-1.1	-	1	1
024	BH17_11.6	-	1	1

Project E23775 - 33 Brighton Ave, Croydon Park

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

Client EI AUSTRALIA

Project E23775 - 33 Brighton Ave, Croydon Park

_	SUMMARY	OF ANALYSIS					
	No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
	025	BH18_0.5-0.6	2	1	1	-	-
	026	BH19_0.5-0.6	2	1	1	-	-
	027	BH20_0.4-0.5	2	1	1	-	-
	028	BH21_0.4-0.5	2	1	1	-	-
	029	QD1	-	1	1	-	-
	030	QR1	-	-	-	12	8
	032	QTB	-	-	1	-	-

_ CONTINUED OVERLEAF

CLIENT DETAILS

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water
030	QR1	1	7	10

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E23775 - 33 Brighton Ave, Croydon Park

source: A

Sheet of	1					Sam	ole M	atrix								Anal	ysis								Comments
Site: 33 BAILHT	IN AVE	En		Proje	ect No:											0	vity)								HM A Arsenic Cadmium
Site: 33 BRIGHT CROYDON	PARK	NSW		6737	75			int, etc.)	PAHs estos	SHAG					cation	exchange)	conducti				JATOT			T	Chromium Copper Lead Mercury Nickel
Laboratory:	ALEXAN	stralia 33 Maddox S NDRIA NSW 94 0400 F: 0	2015	499			-	OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	A /TRH/BTEX			tos	tos Quantification	CEC (cation e	pH / EC (electrical conductivity)	Dewatering Suite	AS		s (HMB / PAH	HMB Arsenic Cadmium Chromium
Sample ID	Laboratory ID	Container Type		Sampling	Time	WATER	SOIL	THERS	HM A /	HMA	HM ^A /	BTEX	VOCs	Asbestos	Asbestos	pH / C	pH/E	Dewa	sPOCAS	PFAS	PHENOL			TCLP	Lead Mercury Nickel
BHIM-1		S.P. 2xVC	Date		PM	×	S	0		×			x								×				Dewatering Suite
BHYM-1	2	1			1	x				x			x								x				TDS / TDU Hardness Total Cyanide
BH7m-(3					×				×			×			-		20			X		\vdash		Metals (AI, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
BHIOM-1	4					×				¥			×			-	+				x				BTEX PAH
BH13m-1	5					14				x			×								×				Total Phenol
4w001	6					7					X				-										
GWARI	2					4					×														Standard
GNORBI		•	V		*	X							-						+						24 Hours
GWRAB	2	VC		B		×						x					+			-					48 Hours
GNATS	9	VC	PRE	PARE		X	<u> </u>		_	_	-	X	-				t	+-	+		+	+	+	-	Other
												+	-	+	+-	+	+		\vdash						
Container Type: J= solvent washed, a	cid rinsed,T	eflon sealed, gla	ass jar				Inve	estigat	or: I at	test th	hat the dard f	ese sa El field	mples samp	were	collec	ted in ures.	accor	dance		Repor	rt with I	El Was	te Clas	ssifica	tion Table
S= solvent washed, a P= natural HDPE plas VC= glass vial, Teflor ZLB = Zip-Lock Bag	stic bottle	lass dottie					P	rint	Name (E	EI):	A	0	Rec		by (SGS		ì		Sa	mp' '		EHS A		dria L	aboratory
	tral	ia	Street, 009	Si Di	gnature ate	F.	B	the second se		D	gnatu ate	04	Su 18	Pe	3	45			1778						
eldus	sud	IC			alia.con	n.au	IN Ple	POF ease e	-mail I	abora	tory re	esults	to: la	b@e	iaust	ralia.	com.	.au		_	negel	ved: 1	i – Ap	л-2	u 10 —

CLIENT DETAILS	S	LABORATORY DETA	ILS	
Contact	Benjamin Aggar	Manager	Huong Crawford	
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	benjamin.aggar@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project Order Number Samples	E23775 33 Brighton Ave, Croydon Park NSW E23775 9	Samples Received Report Due SGS Reference	Wed 11/4/2018 Fri 13/4/2018 SE177844	

_ SUBMISSION DETAILS

This is to confirm that 9 samples were received on Wednesday 11/4/2018. Results are expected to be ready by COB Friday 13/4/2018. Please quote SGS reference SE177844 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 11/4/2018 Yes 5.3°C Two Days Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 9 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

One water sample has been placed on hold.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

Project E23775 33 Brighton Ave, Croydon Park NSW

						I	I	
No.	Sample ID	Mercury (dissolved) in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Total Phenolics in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	BH1M-1	1	22	1	7	10	79	8
002	BH4M-1	1	22	1	7	10	79	8
003	BH7M-1	1	22	1	7	10	79	8
004	BH10M-1	1	22	1	7	10	79	8
005	BH13M-1	1	22	1	7	10	79	8
006	GWQD1	1	-	-	7	10	12	8
007	GWQR1	1	-	-	7	10	12	8
008	GWQTB1	-	-	-	-	-	12	-
009	GWQTS1	-	-	-	-	-	12	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Sheet	of	L			Sam	ple N	Matrix									Ana	lysis					,			Comments
site:	1377 (1040)	33 Brig' n Park	nton P	roject No: 23775	1		itc.)	4s s	S							ange)	conductivity)								HM ^A Arsenic Cadmium
Laboratory	Envirolal 12 Ashle	b Services y Street, VOOD NSW	2067				OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	НМ ^А /ТКН/ВТЕХ/РАНs	HM [≜] /TRH/BTEX	TRH/BTEX/Lead	3TEX			tos	pH / CEC (cation exchange)	(electrical	AS				TCLP PAHs	TCLP HM A	HM B	Chromium Copper Lead Mercury Nickel Zinc
Sample ID	Laboratory ID	Container Type	Samp		WATER	SOIL	THER	IM ≜ DCP/C	M≜ /	₩ ₽ '	RH/E	TRH/BTEX	PAHs	vocs	Asbestos	0 / H	pH / EC	sPOCAS				LCLP		TCLP	HM₿
Q11	$\overline{()}$	5	Date 20-03-18	Time AM Pin		X	Ó	ΤŪ		<u>×</u>				<u> </u>	4	<u> </u>		<i>u</i> 2							Arsenic Cadmium
							[Chromium Lead
 				-																-					Mercury Nickel
	- 	-													Ì			-				-			
	a,						_													Er	Wirdidl	Servia			
			•															Envi		Chatt	112. Herendi	Servia Siliky Siliky	St 67		LABORATORY TURNAROUND
															_			<u>dob</u>	No:	7	18	₽₩₩₽ ₽-7-€	14 14		Standard
																	ļ		Receiv			ho	8	22/	B 24 Hours
																		Rece	ived by	3	R.S P_	0		730	48 Hours
			-						_									Cooli	ng: Ice	œ	k	14	2_		72 Hours
																		Sacu	rity: A		ken/No	ne			Other
												<u>`</u> _													
Investigator:					accord	ance	<u> </u>	ler's Na	me (El	(): 			Rece	ived by	(Enviro	olab):			-		4	đ.			
			ampling proc			_	MĨ ₽ri						Pri	ب 	the	24			-		Į.		Ň		
	send n	would a	6 Mite	Lell_	Dule	Y	Mil	f <u>f</u> hatyre	<u>A. (</u>	RE	en'		1	nature	Ľ					e	ЭİЗ	JE	lŠ	tr	alia
-@ <u>ET</u> Container Tyj	Austr	1, h		-			Dan	1 A	1h	h	X	<u></u>	- Dat	2	-11	20			 Sui	te 6.0					MONT NSW 2009
J= solvent was S= solvent was P= natural HD.	shed, acid rins shed, acid rin	sed glass botile				L	Ľ	 ∕ORT		<u>036</u> -:	<u>/18</u>	> 	<u> </u>			<u>6</u>	30	>				Ph:	9510	6 0722 alia.co	2
VC= glass vial ZLB = Zip-Loc	, Teflon Septi							se e-m			ry resi	ults to:	lab@	Deia	ustra	lia.co	om.a	u							COC July 2016 FORM V.3 - SGS

Appendix H– Laboratory Analytical Reports

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Mitchell Duley	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	mitchell.duley@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23775 - 33 Brighton Ave, Croydon Park	SGS Reference	SE177041 R0
Order Number	E23775	Date Received	21/3/2018
Samples	32	Date Reported	28/3/2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample # 4 : Asbestos found in approx 25x10x6mm Cement Sheet Fragments. Sample # 12 : Asbestos found in approx 3x2x1mm Fibrous Material.

Asbestos analysed by Approved Identifiers Yusuf Kuthpudin and Ravee Sivasubramaniam .

SIGNATORIES

Akheeqar Beniameen Chemist

kinty

Ly Kim Ha Organic Section Head

Bennet Lo Senior Organic Chemist/Metals Chemist

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

mos

Huong Crawford Production Manager

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499 www.sgs.com.au

VOC's in Soil [AN433] Tested: 23/3/2018

			BH1M_0.2-0.3	BH1M_0.8-0.9	BH2_0.2-0.3	BH3_0.3-0.4	BH4M_0.2-0.3
			~~~				
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			19/3/2018	19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.001	SE177041.002	SE177041.003	SE177041.004	SE177041.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	0.8	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.5	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	1.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	1.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH5_0.3-0.4	BH6_0.2-0.3	BH7M_0.2-0.3	BH7M_1.4-1.5	BH8_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			19/3/2018	19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.006	SE177041.007	SE177041.008	SE177041.009	SE177041.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH9_0.3-0.4	BH10M_0.3-0.4	BH10M_0.9-1.0	BH11_0.3-0.4	BH12_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
				19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.011	SE177041.012	SE177041.013	SE177041.014	SE177041.015
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH13M_0.3-0.4	BH13M_0.9-1.0	BH13M_5.5-5.6	BH14_0.4-0.5	BH15_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
				20/3/2018	20/3/2018	20/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.016	SE177041.017	SE177041.018	SE177041.019	SE177041.020
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	1.0	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	1.2	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	1.4	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1



## VOC's in Soil [AN433] Tested: 23/3/2018 (continued)

			BH16_0.4-0.5	BH17_0.5-0.6	BH17_1.0-1.1	BH17_11.6	BH18_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
					-	- 301L	-
				20/3/2018	20/3/2018	20/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.021	SE177041.022	SE177041.023	SE177041.024	SE177041.025
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH19_0.5-0.6	BH20_0.4-0.5	BH21_0.4-0.5	QD1	QTS
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/3/2018	20/3/2018	20/3/2018	19/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.026	SE177041.027	SE177041.028	SE177041.029	SE177041.031
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[83%]
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[84%]
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[84%]
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	[87%]
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[88%]
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	-
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	-
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-

			QTB
			SOIL
			- 20/3/2018
PARAMETER	UOM	LOR	SE177041.032
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1



## Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 23/3/2018

			BH1M_0.2-0.3	BH1M_0.8-0.9	BH2_0.2-0.3	BH3_0.3-0.4	BH4M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			19/3/2018	19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.001	SE177041.002	SE177041.003	SE177041.004	SE177041.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH5_0.3-0.4	BH6_0.2-0.3	BH7M_0.2-0.3	BH7M_1.4-1.5	BH8_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
				19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.006	SE177041.007	SE177041.008	SE177041.009	SE177041.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH9_0.3-0.4	BH10M_0.3-0.4	BH10M_0.9-1.0	BH11_0.3-0.4	BH12_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 19/3/2018 <b>SE177041.011</b>	- 19/3/2018 SE177041.012	- 19/3/2018 SE177041.013	- 19/3/2018 SE177041.014	- 19/3/2018 <b>SE177041.015</b>
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH13M_0.3-0.4	BH13M_0.9-1.0	BH13M_5.5-5.6	BH14_0.4-0.5	BH15_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				20/3/2018	20/3/2018	20/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.016	SE177041.017	SE177041.018	SE177041.019	SE177041.020
TRH C6-C9	mg/kg	20	<20	<20	24	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	37	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	36	<25	<25

			BH16_0.4-0.5	BH17_0.5-0.6	BH17_1.0-1.1	BH17_11.6	BH18_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
						20/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.021	SE177041.022	SE177041.023	SE177041.024	SE177041.025
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH19_0.5-0.6	BH20_0.4-0.5	BH21_0.4-0.5	QD1
			SOIL	SOIL	SOIL	SOIL
						-
			20/3/2018	20/3/2018	20/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.026	SE177041.027	SE177041.028	SE177041.029
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25



## TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 23/3/2018

			BH1M_0.2-0.3	BH1M_0.8-0.9	BH2_0.2-0.3	BH3_0.3-0.4	BH4M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 19/3/2018	- 19/3/2018	- 19/3/2018	- 19/3/2018	- 19/3/2018
PARAMETER	UOM	LOR	SE177041.001	SE177041.002	SE177041.003	SE177041.004	SE177041.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	61	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	63	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	120	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	120	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH5_0.3-0.4	BH6_0.2-0.3	BH7M_0.2-0.3	BH7M_1.4-1.5	BH8_0.3-0.4
PARAMETER	UOM	LOR	SOIL - 19/3/2018 SE177041.006	SOIL - 19/3/2018 SE177041.007	SOIL - 19/3/2018 SE177041.008	SOIL - 19/3/2018 SE177041.009	SOIL - 19/3/2018 SE177041.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	55	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	47	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	94	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH9_0.3-0.4	BH10M_0.3-0.4	BH10M_0.9-1.0	BH11_0.3-0.4	BH12_0.5-0.6
			SOIL -	SOIL -	SOIL	SOIL	SOIL
			19/3/2018	19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.011	SE177041.012	SE177041.013	SE177041.014	SE177041.015
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	390	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	440	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	760	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	830	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	760	<210	<210	<210



## **ANALYTICAL RESULTS**

## TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 23/3/2018 (continued)

			BH13M_0.3-0.4	BH13M_0.9-1.0	BH13M_5.5-5.6	BH14_0.4-0.5	BH15_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
						20/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.016	SE177041.017	SE177041.018	SE177041.019	SE177041.020
TRH C10-C14	mg/kg	20	<20	<20	52	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	59	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	59	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	59	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH16_0.4-0.5	BH17_0.5-0.6	BH17_1.0-1.1	BH17_11.6	BH18_0.5-0.6
PARAMETER	UOM	LOR	SOIL - 20/3/2018 SE177041.021	SOIL - 20/3/2018 SE177041.022	SOIL - 20/3/2018 SE177041.023	SOIL - 20/3/2018 SE177041.024	SOIL - 20/3/2018 <b>SE177041.025</b>
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH19_0.5-0.6	BH20_0.4-0.5	BH21_0.4-0.5	QD1
PARAMETER	UOM	LOR	SOIL - 20/3/2018 SE177041.026	SOIL - 20/3/2018 SE177041.027	SOIL - 20/3/2018 SE177041.028	SOIL - 19/3/2018 <b>SE177041.029</b>
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210



## PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 23/3/2018

			BH1M_0.2-0.3	BH1M_0.8-0.9	BH2_0.2-0.3	BH3_0.3-0.4	BH4M_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 19/3/2018	SOIL - 19/3/2018	SOIL - 19/3/2018	SOIL - 19/3/2018	SOIL - 19/3/2018
Naphthalene	mg/kg	0.1	SE177041.001 <0.1	SE177041.002	SE177041.003 <0.1	SE177041.004 <b>0.1</b>	SE177041.005 <0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	0.4	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1			
					1.4	0.5	0.2
Anthracene	mg/kg	0.1	<0.1	<0.1	0.4	0.1	<0.1
Fluoranthene	mg/kg	0.1	0.1	<0.1	3.7	1.0	0.4
Pyrene	mg/kg	0.1	0.2	<0.1	3.9	1.1	0.4
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	2.1	0.6	0.2
Chrysene	mg/kg	0.1	<0.1	<0.1	1.6	0.5	0.2
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	2.5	0.7	0.2
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	1.3	0.4	0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	2.3	0.6	0.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	1.8	0.6	0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	1.8	0.5	0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>3.1</td><td>0.8</td><td>0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	3.1	0.8	0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>3.2</td><td>0.9</td><td>0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	3.2	0.9	0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>3.2</td><td>0.9</td><td>0.3</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	3.2	0.9	0.3
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	23	6.9	2.2
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	23	6.6	2.2

			BH5_0.3-0.4	BH6_0.2-0.3	BH7M_0.2-0.3	BH7M_1.4-1.5	BH8_0.3-0.4
			00"	0.01	0.01		0.011
			SOIL	SOIL	SOIL	SOIL	SOIL
				19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.006	SE177041.007	SE177041.008	SE177041.009	SE177041.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.2	0.1	<0.1	<0.1	0.2
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.8	0.3	<0.1	<0.1	0.5
Pyrene	mg/kg	0.1	0.9	0.3	<0.1	<0.1	0.5
Benzo(a)anthracene	mg/kg	0.1	0.5	0.1	<0.1	<0.1	0.2
Chrysene	mg/kg	0.1	0.5	0.1	<0.1	<0.1	0.2
Benzo(b&j)fluoranthene	mg/kg	0.1	0.8	0.2	<0.1	<0.1	0.2
Benzo(k)fluoranthene	mg/kg	0.1	0.4	<0.1	<0.1	<0.1	0.1
Benzo(a)pyrene	mg/kg	0.1	0.6	0.2	<0.1	<0.1	0.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.5	<0.1	<0.1	<0.1	0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.4	<0.1	<0.1	<0.1	0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.9</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>0.3</td></lor=0<>	TEQ (mg/kg)	0.2	0.9	<0.2	<0.2	<0.2	0.3
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>1.0</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>0.4</td></lor=lor<>	TEQ (mg/kg)	0.3	1.0	0.3	<0.3	<0.3	0.4
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.9</td><td>0.3</td><td>&lt;0.2</td><td>&lt;0.2</td><td>0.3</td></lor=lor>	TEQ (mg/kg)	0.2	0.9	0.3	<0.2	<0.2	0.3
Total PAH (18)	mg/kg	0.8	5.6	1.3	<0.8	<0.8	2.2
Total PAH (NEPM/WHO 16)	mg/kg	0.8	5.6	1.3	<0.8	<0.8	2.2



## **ANALYTICAL RESULTS**

## PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 23/3/2018 (continued)

			BH9_0.3-0.4	BH10M_0.3-0.4	BH10M_0.9-1.0	BH11_0.3-0.4	BH12_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
				19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.011	SE177041.012	SE177041.013	SE177041.014	SE177041.015
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	0.4	<0.1	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	0.4	<0.1	0.2	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	0.3	<0.1	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.5	<0.1	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.3	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	0.3	<0.1	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.4	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.3	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>0.4</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0.4	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>0.5</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.5	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>0.5</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.5	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	3.4	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	3.4	<0.8	<0.8	<0.8

			BH13M_0.3-0.4	BH13M_0.9-1.0	BH13M_5.5-5.6	BH14_0.4-0.5	BH15_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			- SOIL	SUIL -	- SUIL	- SUIL	501L
						20/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.016	SE177041.017	SE177041.018	SE177041.019	SE177041.020
Naphthalene	mg/kg	0.1	<0.1	<0.1	0.5	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	1.5	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	1.0	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	0.5	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	3.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	1.3	<0.8	<0.8



## **ANALYTICAL RESULTS**

## PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 23/3/2018 (continued)

			BH16_0.4-0.5	BH17_0.5-0.6	BH17_1.0-1.1	BH17_11.6	BH18_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
						20/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.021	SE177041.022	SE177041.023	SE177041.024	SE177041.025
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH19_0.5-0.6	BH20_0.4-0.5	BH21_0.4-0.5
			SOIL	SOIL	SOIL
			-	-	-
PARAMETER	UOM	LOR	SE177041.026	SE177041.027	SE177041.028
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8



## OC Pesticides in Soil [AN420] Tested: 23/3/2018

			BH1M_0.2-0.3	BH2_0.2-0.3	BH3_0.3-0.4	BH4M_0.2-0.3	BH5_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5012	- 5012	- 5012	- 501L	-
				19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.001	SE177041.003	SE177041.004	SE177041.005	SE177041.006
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1



ARAMETER         LON         SOIL				BH6_0.2-0.3	BH7M_0.2-0.3	BH8_0.3-0.4	BH9_0.3-0.4	BH10M_0.3-0.4
PARAMET199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018199201819920181992018 <t< td=""><td></td><td></td><td></td><td>SOIL</td><td>SOIL</td><td>SOIL</td><td>SOIL</td><td>SOIL</td></t<>				SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER         UM         LOR         SET704100         SET704100         SET704100           Haxathordbarzene (HGB)         mgkg         0.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1								-
Heachindemane (HGB)         mg/g         0.1         40.1         40.1         40.1         40.1         40.1           Alpha BrG         mg/g         0.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1 </td <td></td> <td></td> <td>1.05</td> <td></td> <td></td> <td></td> <td></td> <td></td>			1.05					
Alpha BHC         mg/g         0.1         40.1         40.1         40.1         40.1         40.1           Lindane         mg/g         0.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1           Heplachor         mg/g         0.1         40.1         40.1         40.1         40.1         40.1         40.1           Bela BHC         mg/g         0.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1								
Lindne         mp/q         0.1         40.1         40.1         40.1         40.1           Heptachar         mp/q         0.1         40.1         40.1         40.1         40.1           Advin         mp/q         0.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1								
Hepbahlor         mg/q         0.1	-				-			
Admin         mgkg         0.1								
Beta BHC         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1					-			
Deta BHC         mg/g         0.1         <0.1         <0.1         <0.1         <0.1         <0.1           Heptachlor epoxide         mg/kg         0.1         <0.1								
Heptachor epoxide         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1           o.pi-DDE         mg/kg         0.1         <0.1					-	-		
op/DE         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Apha Endosulfan         mg/kg         0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2		mg/kg						
Gamma Chlordane         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1	o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Apha Chordane         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1	Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
non-stand         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1	Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1           Dieldrin         mg/kg         0.2         <0.2	Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin         mg/kg         0.2         <0.2         <0.2         <0.2         <0.2           Endrin         mg/kg         0.2         <0.2	trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin         mg/kg         0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <	p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p-DDD         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1	Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p-DDT         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1	Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Beta Endosulfan         mg/kg         0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1	o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p-DDD         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1	o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p-DDT         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1           Endosulfan sulphate         mg/kg         0.1         <0.1	Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan sulphate         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1 </td <td>p,p'-DDD</td> <td>mg/kg</td> <td>0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td>	p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1           Methoxychlor         mg/kg         0.1         <0.1	p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1           Endrin Ketone         mg/kg         0.1         <0.1	Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1	Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1	Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex         mg/kg         0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1 <t< td=""><td>Endrin Ketone</td><td>mg/kg</td><td>0.1</td><td>&lt;0.1</td><td>&lt;0.1</td><td>&lt;0.1</td><td>&lt;0.1</td><td>&lt;0.1</td></t<>	Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides         mg/kg         1         <1         <1         <1         <1	Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1



			BH11_0.3-0.4	BH12_0.5-0.6	BH13M_0.3-0.4	BH14_0.4-0.5	BH15_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
PARAMETER	UOM	LOR	19/3/2018 SE177041.014	19/3/2018 SE177041.015	20/3/2018 SE177041.016	20/3/2018 SE177041.019	20/3/2018 SE177041.020
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1



			BH16_0.4-0.5	BH17_0.5-0.6	BH18_0.5-0.6	BH19_0.5-0.6	BH20_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
PARAMETER	UOM	LOR	20/3/2018 SE177041.021	20/3/2018 SE177041.022	20/3/2018 SE177041.025	20/3/2018 SE177041.026	20/3/2018 SE177041.027
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1



			BH21_0.4-0.5 SOIL
			-
PARAMETER	UOM	LOR	20/3/2018 SE177041.028
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1



## OP Pesticides in Soil [AN420] Tested: 23/3/2018

			BH1M_0.2-0.3	BH2_0.2-0.3	BH3_0.3-0.4	BH4M_0.2-0.3	BH5_0.3-0.4
PARAMETER	UOM	LOR	SOIL - 19/3/2018 SE177041.001	SOIL - 19/3/2018 SE177041.003	SOIL - 19/3/2018 <b>SE177041.004</b>	SOIL - 19/3/2018 SE177041.005	SOIL - 19/3/2018 <b>SE177041.006</b>
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH6_0.2-0.3	BH7M_0.2-0.3	BH8_0.3-0.4	BH9_0.3-0.4	BH10M_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 19/3/2018	- 19/3/2018	- 19/3/2018	- 19/3/2018	- 19/3/2018
PARAMETER	UOM	LOR	SE177041.007	SE177041.008	SE177041.010	SE177041.011	SE177041.012
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH11_0.3-0.4	BH12_0.5-0.6	BH13M_0.3-0.4	BH14_0.4-0.5	BH15_0.3-0.4
PARAMETER	UOM	LOR	SOIL - 19/3/2018 <b>SE177041.014</b>	SOIL - 19/3/2018 SE177041.015	SOIL - 20/3/2018 SE177041.016	SOIL - 20/3/2018 SE177041.019	SOIL - 20/3/2018 SE177041.020
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7



			BH16_0.4-0.5	BH17_0.5-0.6	BH18_0.5-0.6	BH19_0.5-0.6	BH20_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	20/3/2018 SE177041.021	20/3/2018 SE177041.022	20/3/2018 SE177041.025	20/3/2018 SE177041.026	20/3/2018 SE177041.027
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH21_0.4-0.5
			SOIL
			- 20/3/2018
PARAMETER	UOM	LOR	SE177041.028
Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7



## PCBs in Soil [AN420] Tested: 23/3/2018

			BH1M_0.2-0.3	BH1M_0.8-0.9	BH2_0.2-0.3	BH3_0.3-0.4	BH4M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	19/3/2018 SE177041.001	19/3/2018 SE177041.002	19/3/2018 SE177041.003	19/3/2018 SE177041.004	19/3/2018 SE177041.005
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH5_0.3-0.4	BH6_0.2-0.3	BH7M_0.2-0.3	BH8_0.3-0.4	BH9_0.3-0.4
PARAMETER	UOM	LOR	SOIL - 19/3/2018 SE177041.006	SOIL - 19/3/2018 SE177041.007	SOIL - 19/3/2018 SE177041.008	SOIL - 19/3/2018 SE177041.010	SOIL - 19/3/2018 <b>SE177041.011</b>
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH10M_0.3-0.4	BH11_0.3-0.4	BH12_0.5-0.6	BH13M_0.3-0.4	BH14_0.4-0.5
PARAMETER	UOM	LOR	SOIL - 19/3/2018 <b>SE177041.012</b>	SOIL - 19/3/2018 SE177041.014	SOIL - 19/3/2018 SE177041.015	SOIL - 20/3/2018 SE177041.016	SOIL - 20/3/2018 SE177041.019
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1



## PCBs in Soil [AN420] Tested: 23/3/2018 (continued)

			BH15_0.3-0.4	BH16_0.4-0.5	BH17_0.5-0.6	BH18_0.5-0.6	BH19_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	20/3/2018 SE177041.020	20/3/2018 SE177041.021	20/3/2018 SE177041.022	20/3/2018 SE177041.025	20/3/2018 SE177041.026
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH20_0.4-0.5	BH21_0.4-0.5
PARAMETER	UOM	LOR	SOIL - 20/3/2018 <b>SE177041.027</b>	SOIL - 20/3/2018 SE177041.028
Arochlor 1016	mg/kg	0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1



## **ANALYTICAL RESULTS**

## SE177041 R0

## Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 27/3/2018

			BH1M_0.2-0.3	BH1M_0.8-0.9	BH2_0.2-0.3	BH3_0.3-0.4	BH4M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
				19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.001	SE177041.002	SE177041.003	SE177041.004	SE177041.005
Arsenic, As	mg/kg	3	10	4	9	4	8
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	0.3
Chromium, Cr	mg/kg	0.3	14	5.6	17	62	11
Copper, Cu	mg/kg	0.5	13	22	56	25	18
Lead, Pb	mg/kg	1	17	10	140	21	260
Nickel, Ni	mg/kg	0.5	1.5	1.3	18	57	5.9
Zinc, Zn	mg/kg	0.5	15	13	2200	340	140

			BH5_0.3-0.4	BH6_0.2-0.3	BH7M_0.2-0.3	BH7M_1.4-1.5	BH8_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			19/3/2018	19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.006	SE177041.007	SE177041.008	SE177041.009	SE177041.010
Arsenic, As	mg/kg	3	9	10	7	8	8
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	22	13	10	4.4	9.1
Copper, Cu	mg/kg	0.5	23	28	13	17	21
Lead, Pb	mg/kg	1	67	87	34	11	430
Nickel, Ni	mg/kg	0.5	16	5.1	3.1	0.7	2.7
Zinc, Zn	mg/kg	0.5	87	69	31	15	280

			BH9_0.3-0.4	BH10M_0.3-0.4	BH10M_0.9-1.0	BH11_0.3-0.4	BH12_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
				- 19/3/2018	- 19/3/2018	- 19/3/2018	- 19/3/2018
PARAMETER	UOM	LOR	SE177041.011	SE177041.012	SE177041.013	SE177041.014	SE177041.015
Arsenic, As	mg/kg	3	7	25	8	5	13
Cadmium, Cd	mg/kg	0.3	<0.3	2.2	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	18	6.4	6.3	12	4.9
Copper, Cu	mg/kg	0.5	17	280	26	79	20
Lead, Pb	mg/kg	1	25	480	11	6	16
Nickel, Ni	mg/kg	0.5	16	8.4	<0.5	73	0.7
Zinc, Zn	mg/kg	0.5	120	850	5.0	62	9.1

			BH13M_0.3-0.4	BH13M_0.9-1.0	BH13M_5.5-5.6	BH14_0.4-0.5	BH15_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 20/3/2018	- 20/3/2018	- 20/3/2018	- 20/3/2018	- 20/3/2018
PARAMETER	UOM	LOR	SE177041.016	SE177041.017	SE177041.018	SE177041.019	SE177041.020
Arsenic, As	mg/kg	3	4	8	6	6	8
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	11	4.3	10	17	27
Copper, Cu	mg/kg	0.5	18	24	53	25	29
Lead, Pb	mg/kg	1	24	23	24	18	43
Nickel, Ni	mg/kg	0.5	14	<0.5	26	7.1	23
Zinc, Zn	mg/kg	0.5	80	12	120	23	130



## **ANALYTICAL RESULTS**

## SE177041 R0

#### Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 27/3/2018

(			BH16_0.4-0.5	BH17_0.5-0.6	BH17_1.0-1.1	BH17_11.6	BH18_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
						- 20/3/2018	- 20/3/2018
PARAMETER	UOM	LOR	SE177041.021	SE177041.022	SE177041.023	SE177041.024	SE177041.025
Arsenic, As	mg/kg	3	5	6	5	5	5
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	15	23	22	5.8	5.8
Copper, Cu	mg/kg	0.5	54	22	21	25	23
Lead, Pb	mg/kg	1	32	27	10	7	12
Nickel, Ni	mg/kg	0.5	14	20	19	0.6	1.3
Zinc, Zn	mg/kg	0.5	64	51	33	8.1	22

			BH19_0.5-0.6	BH20_0.4-0.5	BH21_0.4-0.5	QD1
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
PARAMETER	UOM	LOR	20/3/2018 SE177041.026	20/3/2018 SE177041.027	20/3/2018 SE177041.028	19/3/2018 SE177041.029
Arsenic, As	mg/kg	3	<3	3	4	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	6.9	6.5	7.5	8.2
Copper, Cu	mg/kg	0.5	2.8	1.9	4.5	13
Lead, Pb	mg/kg	1	13	16	18	320
Nickel, Ni	mg/kg	0.5	<0.5	1.9	1.4	2.9
Zinc, Zn	mg/kg	0.5	13	31	19	190



## SE177041 R0

## Mercury in Soil [AN312] Tested: 27/3/2018

			BH1M_0.2-0.3	BH1M_0.8-0.9	BH2_0.2-0.3	BH3_0.3-0.4	BH4M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.001	SE177041.002	SE177041.003	SE177041.004	SE177041.005
Mercury	mg/kg	0.05	<0.05	<0.05	0.07	<0.05	<0.05

			BH5_0.3-0.4	BH6_0.2-0.3	BH7M_0.2-0.3	BH7M_1.4-1.5	BH8_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.006	SE177041.007	SE177041.008	SE177041.009	SE177041.010
Mercury	mg/kg	0.05	0.05	<0.05	<0.05	<0.05	<0.05

			BH9_0.3-0.4	BH10M_0.3-0.4	BH10M_0.9-1.0	BH11_0.3-0.4	BH12_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.011	SE177041.012	SE177041.013	SE177041.014	SE177041.015
Mercury	mg/kg	0.05	<0.05	0.11	<0.05	<0.05	<0.05

			BH13M_0.3-0.4	BH13M_0.9-1.0	BH13M_5.5-5.6	BH14_0.4-0.5	BH15_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				20/3/2018	20/3/2018	20/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.016	SE177041.017	SE177041.018	SE177041.019	SE177041.020
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH16_0.4-0.5	BH17_0.5-0.6	BH17_1.0-1.1	BH17_11.6	BH18_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
				20/3/2018	20/3/2018	20/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.021	SE177041.022	SE177041.023	SE177041.024	SE177041.025
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH19_0.5-0.6	BH20_0.4-0.5	BH21_0.4-0.5	QD1
			SOIL	SOIL	SOIL	SOIL
						- 19/3/2018
PARAMETER	UOM	LOR	SE177041.026	SE177041.027	SE177041.028	SE177041.029
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05



## SE177041 R0

## Moisture Content [AN002] Tested: 26/3/2018

			BH1M_0.2-0.3	BH1M_0.8-0.9	BH2_0.2-0.3	BH3_0.3-0.4	BH4M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.001	SE177041.002	SE177041.003	SE177041.004	SE177041.005
% Moisture	%w/w	0.5	15	6.7	15	5.5	11

			BH5_0.3-0.4	BH6_0.2-0.3	BH7M_0.2-0.3	BH7M_1.4-1.5	BH8_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.006	SE177041.007	SE177041.008	SE177041.009	SE177041.010
% Moisture	%w/w	0.5	15	15	19	17	11

			BH9_0.3-0.4	BH10M_0.3-0.4	BH10M_0.9-1.0	BH11_0.3-0.4	BH12_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.011	SE177041.012	SE177041.013	SE177041.014	SE177041.015
% Moisture	%w/w	0.5	13	19	26	13	11

			BH13M_0.3-0.4	BH13M_0.9-1.0	BH13M_5.5-5.6	BH14_0.4-0.5	BH15_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						20/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.016	SE177041.017	SE177041.018	SE177041.019	SE177041.020
% Moisture	%w/w	0.5	14	12	6.1	26	21

			BH16_0.4-0.5	BH17_0.5-0.6	BH17_1.0-1.1	BH17_11.6	BH18_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				20/3/2018	20/3/2018	20/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.021	SE177041.022	SE177041.023	SE177041.024	SE177041.025
% Moisture	%w/w	0.5	12	11	16	16	8.1

			BH19_0.5-0.6	BH20_0.4-0.5	BH21_0.4-0.5	QD1	QTB
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						19/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.026	SE177041.027	SE177041.028	SE177041.029	SE177041.032
% Moisture	%w/w	0.5	5.5	6.0	4.6	10	<0.5



## SE177041 R0

## Fibre Identification in soil [AN602] Tested: 27/3/2018

			BH1M_0.2-0.3	BH2_0.2-0.3	BH3_0.3-0.4	BH4M_0.2-0.3	BH5_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
				19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.001	SE177041.003	SE177041.004	SE177041.005	SE177041.006
Asbestos Detected	No unit	-	No	No	Yes	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	>0.01	<0.01	<0.01

			BH6_0.2-0.3	BH7M_0.2-0.3	BH8_0.3-0.4	BH9_0.3-0.4	BH10M_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				19/3/2018	19/3/2018	19/3/2018	19/3/2018
PARAMETER	UOM	LOR	SE177041.007	SE177041.008	SE177041.010	SE177041.011	SE177041.012
Asbestos Detected	No unit	-	No	No	No	No	Yes
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH11_0.3-0.4	BH12_0.5-0.6	BH13M_0.3-0.4	BH14_0.4-0.5	BH15_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				19/3/2018	20/3/2018	20/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.014	SE177041.015	SE177041.016	SE177041.019	SE177041.020
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH16_0.4-0.5	BH17_0.5-0.6	BH18_0.5-0.6	BH19_0.5-0.6	BH20_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/3/2018	20/3/2018	20/3/2018	20/3/2018	20/3/2018
PARAMETER	UOM	LOR	SE177041.021	SE177041.022	SE177041.025	SE177041.026	SE177041.027
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH21_0.4-0.5
			SOIL
			- 20/3/2018
PARAMETER	UOM	LOR	SE177041.028
Asbestos Detected	No unit	-	No
Estimated Fibres*	%w/w	0.01	<0.01



## VOCs in Water [AN433] Tested: 26/3/2018

			QR1
PARAMETER	UOM	LOR	WATER - 20/3/2018 <b>SE177041.030</b>
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	μg/L	0.5	<0.5



## Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 26/3/2018

			QR1
			WATER
PARAMETER	UOM	LOR	20/3/2018 SE177041.030
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50



## **ANALYTICAL RESULTS**

## SE177041 R0

## TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 23/3/2018

			QR1
			WATER - 20/3/2018
PARAMETER	UOM	LOR	SE177041.030
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C36	µg/L	450	<450
TRH C10-C40	µg/L	650	<650
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60



## Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 27/3/2018

			QR1
			WATER
			- 20/3/2018
PARAMETER	UOM	LOR	SE177041.030
Arsenic, As	µg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	2
Copper, Cu	µg/L	1	40
Lead, Pb	µg/L	1	3
Nickel, Ni	µg/L	1	3
Zinc, Zn	µg/L	5	110



## Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 27/3/2018

			QR1
			WATER
			-
			20/3/2018
PARAMETER	UOM	LOR	SE177041.030
Mercury	mg/L	0.0001	<0.0001



METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS /ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."



 AN602
 The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-</td>

 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):

 (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and

 (c)
 these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.



## **ANALYTICAL REPORT**



- CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Mitchell Duley	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	61 2 95160722 (Not specified) mitchell.duley@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	E23775 - 33 Brighton Ave, Croydon Park E23775 21	SGS Reference Date Received Date Reported	<b>SE177041 R0</b> 21 Mar 2018 28 Mar 2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample # 4 : Asbestos found in approx 25x10x6mm Cement Sheet Fragments. Sample # 12 : Asbestos found in approx 3x2x1mm Fibrous Material.

Asbestos analysed by Approved Identifiers Yusuf Kuthpudin and Ravee Sivasubramaniam .

Environment, Health and Safety

SIGNATORIES

Akheeqar Beniameen Chemist

kinty

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd

ABN 44 000 964 278

Bennet Lo Senior Organic Chemist/Metals Chemis

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

2015 Australia 2015 Australia t +61 2 8594 0400 f +61 2 8594 0499

low

Huong Crawford

**Production Manager** 

www.sgs.com.au Member of the SGS Group



# ANALYTICAL REPORT

Fibre Identifica	ition in soil				Method AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w
SE177041.001	BH1M_0.2-0.3	Soil	162g Clay,Rocks	19 Mar 2018	No Asbestos Found	<0.01
SE177041.003	BH2_0.2-0.3	Soil	190g Clay,Sand,Soil, Rocks	19 Mar 2018	No Asbestos Found Organic Fibres Detected	<0.01
SE177041.004	BH3_0.3-0.4	Soil	217g Sand,Soil,Rocks	19 Mar 2018	Chrysotile Asbestos Found	>0.01
SE177041.005	BH4M_0.2-0.3	Soil	198g Sand,Soil,Rocks	19 Mar 2018	No Asbestos Found	<0.01
SE177041.006	BH5_0.3-0.4	Soil	306g Clay,Sand,Soil, Rocks	19 Mar 2018	No Asbestos Found	<0.01
SE177041.007	BH6_0.2-0.3	Soil	192g Clay,Sand,Soil, Rocks	19 Mar 2018	No Asbestos Found	<0.01
SE177041.008	BH7M_0.2-0.3	Soil	226g Clay,Sand,Rock s	19 Mar 2018	No Asbestos Found Synthetic Mineral Fibres Detected	<0.01
SE177041.010	BH8_0.3-0.4	Soil	212g Clay,Sand,Soil, Rocks	19 Mar 2018	No Asbestos Found	<0.01
SE177041.011	BH9_0.3-0.4	Soil	213g Clay,Sand,Rock s	19 Mar 2018	No Asbestos Found	<0.01
SE177041.012	BH10M_0.3-0.4	Soil	198g Clay,Sand,Soil, Rocks	19 Mar 2018	Chrysotile Asbestos Found Organic Fibres Detected	<0.01
SE177041.014	BH11_0.3-0.4	Soil	278g Sand,Soil,Rocks	19 Mar 2018	No Asbestos Found	<0.01
SE177041.015	BH12_0.5-0.6	Soil	214g Clay,Rocks	19 Mar 2018	No Asbestos Found	<0.01
SE177041.016	BH13M_0.3-0.4	Soil	220g Clay,Sand,Rock s	20 Mar 2018	No Asbestos Found	<0.01
SE177041.019	BH14_0.4-0.5	Soil	231g Clay,Rocks	20 Mar 2018	No Asbestos Found	<0.01
SE177041.020	BH15_0.3-0.4	Soil	129g Clay,Soil,Rocks	20 Mar 2018	No Asbestos Found	<0.01
SE177041.021	BH16_0.4-0.5	Soil	262g Clay,Sand,Rock s	20 Mar 2018	No Asbestos Found	<0.01
SE177041.022	BH17_0.5-0.6	Soil	190g Clay,Sand,Rock s	20 Mar 2018	No Asbestos Found	<0.01
SE177041.025	BH18_0.5-0.6	Soil	209g Clay,Rocks	20 Mar 2018	No Asbestos Found	<0.01
SE177041.026	BH19_0.5-0.6	Soil	187g Clay,Sand,Rock s	20 Mar 2018	No Asbestos Found	<0.01
SE177041.027	BH20_0.4-0.5	Soil	237g Clay,Soil,Rocks	20 Mar 2018	No Asbestos Found	<0.01
SE177041.028	BH21_0.4-0.5	Soil	166g Clay,Sand,Rock	20 Mar 2018	No Asbestos Found	<0.01



## **METHOD SUMMARY**

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	<ul> <li>(a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):</li> <li>(b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and</li> <li>(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.</li> </ul>

Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR --Listed. Not Required Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

#### Sampled by the client.

FOOTNOTES -

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.



## **ANALYTICAL REPORT**





CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Nicholas Grbich	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	61 2 95160722 (Not specified) nicholas.grbich@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sqs.com
Project Order Number Samples	E23775 33 Brighton Ave, Croydon Park Add E23775 33	SGS Reference Date Received Date Reported	SE177041A R0 16/4/2018 17/4/2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong Liang Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

17/04/2018

Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au Member of the SGS Group

Page 1 of 4



## Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 16/4/2018

			QRB1
			SOIL
PARAMETER	UOM	LOR	- 20/3/2018 SE177041A.033
Arsenic, As	µg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	1
Copper, Cu	µg/L	1	<1
Lead, Pb	μg/L	1	<1
Nickel, Ni	μg/L	1	<1
Zinc, Zn	μg/L	5	<5



## Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 17/4/2018

			QRB1
			SOIL
PARAMETER	UOM	LOR	SE177041A.033
Mercury	mg/L	0.0001	<0.0001



_	_ METHOD	- METHODOLOGY SUMMARY
	AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
	AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
	AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
$\subseteq$		

#### FOOTNOTES

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.



# **ANALYTICAL REPORT**





CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Benjamin Aggar	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722 (Not specified)	Telephone	+61 2 8594 0400 +61 2 8594 0499
Facsimile Email	(Not specificu) benjamin.aggar@eiaustralia.com.au	Facsimile Email	au.environmental.sydney@sgs.com
Project Order Number Samples	E23775 33 Brighton Ave, Croydon Park NSW E23775 9	SGS Reference Date Received Date Reported	<b>SE177844 R0</b> 11/4/2018 16/4/2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheeqar Beniameen Chemist



Dong Liang Metals/Inorganics Team Leader

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au



## **ANALYTICAL RESULTS**

## SE177844 R0

## VOCs in Water [AN433] Tested: 12/4/2018

PARAMETER         UOM         LOR         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018<	ATER - /4/2018 <0.5 <0.5 <0.5
PARAMETER         UOM         LOR         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018         10/4/2018<	- /4/2018 /7844.005 <0.5 <0.5
PARAMETER         UOM         LOR         SE177844.001         SE177844.002         SE177844.003         SE177844.004         SE177844.004         SE177844.004         SE177844.003         SE177844.003         SE177844.004         SE177844.001         SE177844.015         Se1	<0.5 <0.5
Benzene         μg/L         0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5	<0.5 <0.5
Toluene         μg/L         0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5	
m/p-xylene         µg/L         1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1	÷0.5
o-xylene         µg/L         0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5	
Total Xylenes         µg/L         1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5         <1.5	<1
Total BTEX         µg/L         3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3	<0.5
Naphthalene         µg/L         0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5	<1.5
Dichlorodifluoromethane (CFC-12)         µg/L         5         <5         <5         <5         <5           Chloromethane         µg/L         5         <5	<3
Chloromethane         µg/L         5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5         <5	<0.5
Vinyl chloride (Chloroethene) µg/L 0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	<5
	<5
Bromomethane 110/1 10 <10 <10 <10	<0.3
Bromomethane         μg/L         10         <10         <10         <10         <10	<10
Chloroethane         µg/L         5         <5         <5         <5	<5
	<1
	24
	<5
	<0.5
	<0.5
	<5
Allyl chloride µg/L 2 <2 <2 <2 <2 <2	<2
Carbon disulfide         μg/L         2         <2         <2         <2         <2	<2
	<0.5
	<2
	<0.5
	<10
	<10
	<0.5
	<0.5 <0.5
	<0.5
	<0.5
	<0.5
	<0.5
	<0.5
	<0.5
	<0.5
	<0.5
	:100
	<0.5
MIBK (4-methyl-2-pentanone)	<5
	<0.5
trans-1,3-dichloropropene µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5
1,1,2-trichloroethane µg/L 0.5 <0.5 <0.5 <0.5 <0.5	<0.5
1,3-dichloropropane µg/L 0.5 <0.5 <0.5 <0.5 <0.5	<0.5
Dibromochloromethane (THM)         µg/L         0.5         <0.5         <0.5         <0.5         <0.5	<0.5
2-hexanone (MBK)	<5
1,2-dibromoethane (EDB)	<0.5
Tetrachloroethene (Perchloroethylene,PCE)         µg/L         0.5         <0.5         <0.5         <0.5         <0.5	<0.5
1,1,1,2-tetrachloroethane         μg/L         0.5         <0.5         <0.5         <0.5	<0.5
Chlorobenzene µg/L 0.5 <0.5 <0.5 <0.5 <0.5	<0.5
Bromoform (THM)         μg/L         0.5         <0.5         <0.5         <0.5         <0.5	<0.5
cis-1,4-dichloro-2-butene µg/L 1 <1 <1 <1 <1	<1
Styrene (Vinyl benzene)         µg/L         0.5         <0.5         <0.5         <0.5         <0.5	<0.5
1,1,2,2-tetrachloroethane μg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5
1,2,3-trichloropropane	<0.5
trans-1,4-dichloro-2-butene         μg/L         1         <1         <1         <1	<1



## VOCs in Water [AN433] Tested: 12/4/2018 (continued)

			BH1M-1	BH4M-1	BH7M-1	BH10M-1	BH13M-1
			WATER	WATER	WATER	WATER	WATER
			10/4/2018	10/4/2018	10/4/2018	10/4/2018	10/4/2018
PARAMETER	UOM	LOR	SE177844.001	SE177844.002	SE177844.003	SE177844.004	SE177844.005
Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
n-propylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
n-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total VOC	µg/L	10	<10	<10	<10	<10	28



## **ANALYTICAL RESULTS**

## VOCs in Water [AN433] Tested: 12/4/2018 (continued)

			C14/0D4	CIMORA	CWOTP4	CWOTEA
			GWQD1	GWQR1	GWQTB1	GWQTS1
			WATER	WATER	WATER	WATER
			- 10/4/2018	- 10/4/2018	- 10/4/2018	- 10/4/2018
PARAMETER	UOM	LOR	SE177844.006	SE177844.007	SE177844.008	SE177844.009
Benzene	µg/L	0.5	<0.5	<0.5	<0.5	[100%]
Toluene	µg/L	0.5	<0.5	<0.5	<0.5	[105%]
Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	[98%]
m/p-xylene	µg/L	1	<1	<1	<1	[98%]
o-xylene	µg/L	0.5	<0.5	<0.5	<0.5	[98%]
Total Xylenes	µg/L	1.5	<1.5	<1.5	<1.5	-
Total BTEX	µg/L	3	<3	<3	<3	-
Naphthalene	µg/L	0.5	<0.5	<0.5	<0.5	-
Dichlorodifluoromethane (CFC-12)	µg/L	5	-	-	-	-
Chloromethane	µg/L	5	-	-	-	-
Vinyl chloride (Chloroethene)	µg/L	0.3	-	-	-	-
Bromomethane	µg/L	10	-	-	-	-
Chloroethane	µg/L	5	-	-	-	-
Trichlorofluoromethane	µg/L	1	-	-	-	-
Acetone (2-propanone)	µg/L	10	-	-	-	-
lodomethane	µg/L	5	-	-	-	-
1,1-dichloroethene	µg/L	0.5	-	-	-	-
Acrylonitrile	µg/L	0.5	-	-	-	-
Dichloromethane (Methylene chloride)	µg/L	5	-	-	-	-
Allyl chloride	µg/L	2	-	-	-	-
Carbon disulfide	µg/L	2	-	-	-	-
trans-1,2-dichloroethene	µg/L	0.5	-	-	-	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	-	-	-	-
1,1-dichloroethane	µg/L	0.5	-	-	-	-
Vinyl acetate	µg/L	10	-	-	-	-
MEK (2-butanone)	µg/L	10	-	-	-	-
cis-1,2-dichloroethene	µg/L	0.5	-	-	-	-
Bromochloromethane	µg/L	0.5	-	-	-	-
Chloroform (THM)	µg/L	0.5	-	-	-	-
2,2-dichloropropane	µg/L	0.5	-	-	-	-
1,2-dichloroethane	µg/L	0.5	-	-	-	-
1,1,1-trichloroethane	µg/L	0.5	-	-	-	-
1,1-dichloropropene	µg/L	0.5	-	-	-	-
Carbon tetrachloride	µg/L	0.5	-	-	-	-
Dibromomethane	µg/L	0.5	-	-	-	-
1,2-dichloropropane	µg/L	0.5	-	-	-	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	-	-	-	-
2-nitropropane	µg/L	100	-	-	-	-
Bromodichloromethane (THM) MIBK (4-methyl-2-pentanone)	µg/L	0.5	-	-	-	-
cis-1,3-dichloropropene	μg/L μg/L	0.5	-	-	-	-
trans-1,3-dichloropropene	μg/L	0.5		-	-	-
1,1,2-trichloroethane	μg/L μg/L	0.5	-	-	-	-
1,3-dichloropropane	μg/L	0.5	-	_	-	-
Dibromochloromethane (THM)	µg/L	0.5	-		-	-
2-hexanone (MBK)	μg/L	5			-	
1,2-dibromoethane (EDB)	µg/L	0.5	-	-	-	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5			-	_
1,1,1,2-tetrachloroethane	µg/L	0.5	_	-	-	-
Chlorobenzene	µg/L	0.5	_	-	-	-
Bromoform (THM)	µg/L	0.5			-	-
cis-1,4-dichloro-2-butene	µg/L	1			-	_
Styrene (Vinyl benzene)	µg/L	0.5			-	-
1,1,2,2-tetrachloroethane	µg/L	0.5			-	_
1,2,3-trichloropropane	µg/L	0.5	_	-	-	-
trans-1,4-dichloro-2-butene	μg/L	1	-	-	-	-
			1		1	



## VOCs in Water [AN433] Tested: 12/4/2018 (continued)

			GWQD1	GWQR1	GWQTB1	GWQTS1
			WATER	WATER	WATER	WATER
			10/4/2018	10/4/2018	10/4/2018	10/4/2018
PARAMETER	UOM	LOR	SE177844.006	SE177844.007	SE177844.008	SE177844.009
Isopropylbenzene (Cumene)	µg/L	0.5	-	-	-	-
Bromobenzene	µg/L	0.5	-	-	-	-
n-propylbenzene	µg/L	0.5	-	-	-	-
2-chlorotoluene	µg/L	0.5	-	-	-	-
4-chlorotoluene	µg/L	0.5	-	-	-	-
1,3,5-trimethylbenzene	µg/L	0.5	-	-	-	-
tert-butylbenzene	µg/L	0.5	-	-	-	-
1,2,4-trimethylbenzene	µg/L	0.5	-	-	-	-
sec-butylbenzene	µg/L	0.5	-	-	-	-
1,3-dichlorobenzene	µg/L	0.5	-	-	-	-
1,4-dichlorobenzene	µg/L	0.3	-	-	-	-
p-isopropyltoluene	µg/L	0.5	-	-	-	-
1,2-dichlorobenzene	µg/L	0.5	-	-	-	-
n-butylbenzene	µg/L	0.5	-	-	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	-	-	-	-
1,2,4-trichlorobenzene	µg/L	0.5	-	-	-	-
Hexachlorobutadiene	µg/L	0.5	-	-	-	-
1,2,3-trichlorobenzene	µg/L	0.5	-	-	-	-
Total VOC	µg/L	10	-	-	-	-



## SE177844 R0

#### Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 12/4/2018

			BH1M-1	BH4M-1	BH7M-1	BH10M-1	BH13M-1
			WATER	WATER	WATER	WATER	WATER
			- 10/4/2018	- 10/4/2018	- 10/4/2018	- 10/4/2018	- 10/4/2018
PARAMETER	UOM	LOR	SE177844.001	SE177844.002	SE177844.003	SE177844.004	SE177844.005
TRH C6-C9	µg/L	40	<40	<40	<40	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	<50	<50	<50	<50

			GWQD1	GWQR1
			WATER - 10/4/2018	WATER - 10/4/2018
PARAMETER	UOM	LOR	SE177844.006	SE177844.007
TRH C6-C9	µg/L	40	<40	<40
Benzene (F0)	μg/L	0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50



## TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 13/4/2018

			BH1M-1	BH4M-1	BH7M-1	BH10M-1	BH13M-1
			WATER	WATER	WATER	WATER	WATER
			- 10/4/2018	- 10/4/2018	- 10/4/2018	- 10/4/2018	- 10/4/2018
PARAMETER	UOM	LOR	SE177844.001	SE177844.002	SE177844.003	SE177844.004	SE177844.005
TRH C10-C14	µg/L	50	<50	<50	<50	<50	<50
TRH C15-C28	µg/L	200	<200	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200	<200
TRH >C10-C16	µg/L	60	<60	<60	<60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500	<500
TRH C10-C36	µg/L	450	<450	<450	<450	<450	<450
TRH C10-C40	µg/L	650	<650	<650	<650	<650	<650
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	<60	<60	<60	<60

			GWQD1	GWQR1
			WATER	WATER
			10/4/2018	10/4/2018
PARAMETER	UOM	LOR	SE177844.006	SE177844.007
TRH C10-C14	µg/L	50	<50	<50
TRH C15-C28	µg/L	200	<200	<200
TRH C29-C36	µg/L	200	<200	<200
TRH C37-C40	µg/L	200	<200	<200
TRH >C10-C16	µg/L	60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500
TRH C10-C36	µg/L	450	<450	<450
TRH C10-C40	µg/L	650	<650	<650
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	<60



## PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 13/4/2018

			BH1M-1	BH4M-1	BH7M-1	BH10M-1	BH13M-1
			WATER	WATER	WATER	WATER	WATER
			- 10/4/2018	- 10/4/2018	- 10/4/2018	- 10/4/2018	- 10/4/2018
PARAMETER	UOM	LOR	SE177844.001	SE177844.002	SE177844.003	SE177844.004	SE177844.005
Naphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	<1	<1	<1	<1



## SE177844 R0

## Total Phenolics in Water [AN289] Tested: 12/4/2018

			BH1M-1	BH4M-1	BH7M-1	BH10M-1	BH13M-1
			WATER	WATER	WATER	WATER	WATER
							-
			10/4/2018	10/4/2018	10/4/2018	10/4/2018	10/4/2018
PARAMETER	UOM	LOR	SE177844.001	SE177844.002	SE177844.003	SE177844.004	SE177844.005
Total Phenols	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01



## Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 13/4/2018

			BH1M-1	BH4M-1	BH7M-1	BH10M-1	BH13M-1
			WATER	WATER	WATER	WATER	WATER
			10/4/2018	10/4/2018	10/4/2018	10/4/2018	10/4/2018
PARAMETER	UOM	LOR	SE177844.001	SE177844.002	SE177844.003	SE177844.004	SE177844.005
Arsenic, As	µg/L	1	<1	<1	<1	<1	1
Cadmium, Cd	µg/L	0.1	1.0	<0.1	0.6	0.9	<0.1
Chromium, Cr	µg/L	1	2	1	3	2	1
Copper, Cu	µg/L	1	32	60	53	54	25
Lead, Pb	µg/L	1	2	4	4	4	2
Nickel, Ni	µg/L	1	120	73	170	67	47
Zinc, Zn	µg/L	5	600	280	900	290	84

			GWQD1	GWQR1
			WATER	WATER
			- 10/4/2018	- 10/4/2018
PARAMETER	UOM	LOR	SE177844.006	SE177844.007
Arsenic, As	µg/L	1	<1	<1
Cadmium, Cd	µg/L	0.1	1.0	<0.1
Chromium, Cr	µg/L	1	1	<1
Copper, Cu	µg/L	1	17	<1
Lead, Pb	µg/L	1	<1	<1
Nickel, Ni	µg/L	1	110	<1
Zinc, Zn	µg/L	5	580	63



## SE177844 R0

## Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 13/4/2018

			BH1M-1	BH4M-1	BH7M-1	BH10M-1	BH13M-1
			WATER	WATER	WATER	WATER	WATER
							-
			10/4/2018	10/4/2018	10/4/2018	10/4/2018	10/4/2018
PARAMETER	UOM	LOR	SE177844.001	SE177844.002	SE177844.003	SE177844.004	SE177844.005
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

			GWQD1	GWQR1
			WATER	WATER
			- 10/4/2018	- 10/4/2018
PARAMETER	UOM	LOR	SE177844.006	SE177844.007
Mercury	mg/L	0.0001	<0.0001	<0.0001



METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.



#### FOOTNOTES

NATA accreditation does not cover the performance of this service. ** Indicative data, theoretical holding time exceeded

Not analysed. NVL Not validated. Insufficient sample for analysis. IS I NR Sample listed, but not received. UOM Unit of Measure. Limit of Reporting. LOR Raised/lowered Limit of î↓ Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi b.
- 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sqs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.



## **CERTIFICATE OF ANALYSIS 187794**

Client Details	
Client	El Australia
Attention	Lab Email
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	<u>E23775</u>
Number of Samples	1 Soil
Date samples received	21/03/2018
Date completed instructions received	22/03/2018

## **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	29/03/2018	
Date of Issue	26/03/2018	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

Results Approved By Jeremy Faircloth, Organics Supervisor Leon Ow, Chemist

## Authorised By

20

David Springer, General Manager



## Client Reference: E23775

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		187794-1
Your Reference	UNITS	QT1
Date Sampled		20/03/2018
Type of sample		Soil
Date extracted	-	23/03/2018
Date analysed	-	23/03/2018
TRH C ₆ - C ₉	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTPH C6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	79

svTRH (C10-C40) in Soil		
Our Reference		187794-1
Your Reference	UNITS	QT1
Date Sampled		20/03/2018
Type of sample		Soil
Date extracted	-	23/03/2018
Date analysed	-	24/03/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C10-C16	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	82

## Client Reference: E23775

Acid Extractable metals in soil		
Our Reference		187794-1
Your Reference	UNITS	QT1
Date Sampled		20/03/2018
Type of sample		Soil
Date prepared	-	23/03/2018
Date analysed	-	23/03/2018
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	4
Copper	mg/kg	13
Lead	mg/kg	6
Mercury	mg/kg	<0.1
Nickel	mg/kg	8
Zinc	mg/kg	18

## Client Reference: E23775

Moisture		
Our Reference		187794-1
Your Reference	UNITS	QT1
Date Sampled		20/03/2018
Type of sample		Soil
Date prepared	-	23/03/2018
Date analysed	-	26/03/2018
Moisture	%	15

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			23/03/2018	[NT]		[NT]	[NT]	23/03/2018	
Date analysed	-			23/03/2018	[NT]		[NT]	[NT]	23/03/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	98	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	98	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	115	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	96	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	89	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	94	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	95	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	85	[NT]		[NT]	[NT]	82	

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			23/03/2018	[NT]		[NT]	[NT]	23/03/2018	
Date analysed	-			24/03/2018	[NT]		[NT]	[NT]	24/03/2018	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	116	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	98	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	116	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	98	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
Surrogate o-Terphenyl	%		Org-003	88	[NT]		[NT]	[NT]	97	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date prepared	-			23/03/2018	[NT]		[NT]	[NT]	23/03/2018	
Date analysed	-			23/03/2018	[NT]		[NT]	[NT]	23/03/2018	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	110	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	102	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	108	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	112	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	106	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	102	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	108	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	109	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

# Appendix I– Laboratory QA/QC Policies and DQOs



# **STATEMENT OF QA/QC** PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Mitchell Duley	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	mitchell.duley@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23775 - 33 Brighton Ave, Croydon Park	SGS Reference	SE177041 R0
Order Number	E23775	Date Received	21 Mar 2018
Samples	32	Date Reported	28 Mar 2018

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

#### All Data Quality Objectives were met with the exception of the following:

Duplicate	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	2 items
	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	4 items
Matrix Spike	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	1 item

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### Fibre Identification in soil

Fibre Identification in soil							Method: I	ME-(AU)-[ENV]AN6
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.2-0.3	SE177041.001	LB144447	19 Mar 2018	21 Mar 2018	19 Mar 2019	27 Mar 2018	19 Mar 2019	28 Mar 2018
BH2_0.2-0.3	SE177041.003	LB144447	19 Mar 2018	21 Mar 2018	19 Mar 2019	27 Mar 2018	19 Mar 2019	28 Mar 2018
BH3_0.3-0.4	SE177041.004	LB144447	19 Mar 2018	21 Mar 2018	19 Mar 2019	27 Mar 2018	19 Mar 2019	28 Mar 2018
BH4M_0.2-0.3	SE177041.005	LB144447	19 Mar 2018	21 Mar 2018	19 Mar 2019	27 Mar 2018	19 Mar 2019	28 Mar 2018
BH5_0.3-0.4	SE177041.006	LB144447	19 Mar 2018	21 Mar 2018	19 Mar 2019	27 Mar 2018	19 Mar 2019	28 Mar 2018
BH6_0.2-0.3	SE177041.007	LB144447	19 Mar 2018	21 Mar 2018	19 Mar 2019	27 Mar 2018	19 Mar 2019	28 Mar 2018
BH7M_0.2-0.3	SE177041.008	LB144447	19 Mar 2018	21 Mar 2018	19 Mar 2019	27 Mar 2018	19 Mar 2019	28 Mar 2018
BH8_0.3-0.4	SE177041.010	LB144447	19 Mar 2018	21 Mar 2018	19 Mar 2019	27 Mar 2018	19 Mar 2019	28 Mar 2018
BH9_0.3-0.4	SE177041.011	LB144447	19 Mar 2018	21 Mar 2018	19 Mar 2019	27 Mar 2018	19 Mar 2019	28 Mar 2018
BH10M_0.3-0.4	SE177041.012	LB144447	19 Mar 2018	21 Mar 2018	19 Mar 2019	27 Mar 2018	19 Mar 2019	28 Mar 2018
BH11_0.3-0.4	SE177041.014	LB144447	19 Mar 2018	21 Mar 2018	19 Mar 2019	27 Mar 2018	19 Mar 2019	28 Mar 2018
BH12_0.5-0.6	SE177041.015	LB144447	19 Mar 2018	21 Mar 2018	19 Mar 2019	27 Mar 2018	19 Mar 2019	28 Mar 2018
BH13M_0.3-0.4	SE177041.016	LB144447	20 Mar 2018	21 Mar 2018	20 Mar 2019	27 Mar 2018	20 Mar 2019	28 Mar 2018
BH14_0.4-0.5	SE177041.019	LB144447	20 Mar 2018	21 Mar 2018	20 Mar 2019	27 Mar 2018	20 Mar 2019	28 Mar 2018
BH15_0.3-0.4	SE177041.020	LB144447	20 Mar 2018	21 Mar 2018	20 Mar 2019	27 Mar 2018	20 Mar 2019	28 Mar 2018
BH16_0.4-0.5	SE177041.021	LB144447	20 Mar 2018	21 Mar 2018	20 Mar 2019	27 Mar 2018	20 Mar 2019	28 Mar 2018
BH17_0.5-0.6	SE177041.022	LB144447	20 Mar 2018	21 Mar 2018	20 Mar 2019	27 Mar 2018	20 Mar 2019	28 Mar 2018
BH18_0.5-0.6	SE177041.025	LB144447	20 Mar 2018	21 Mar 2018	20 Mar 2019	27 Mar 2018	20 Mar 2019	28 Mar 2018
BH19_0.5-0.6	SE177041.026	LB144447	20 Mar 2018	21 Mar 2018	20 Mar 2019	27 Mar 2018	20 Mar 2019	28 Mar 2018
BH20_0.4-0.5	SE177041.027	LB144447	20 Mar 2018	21 Mar 2018	20 Mar 2019	27 Mar 2018	20 Mar 2019	28 Mar 2018
BH21_0.4-0.5	SE177041.028	LB144447	20 Mar 2018	21 Mar 2018	20 Mar 2019	27 Mar 2018	20 Mar 2019	28 Mar 2018
fercury (dissolved) in Water							Method: ME-(AU)-[ENV]	AN311(Perth)/AN

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE177041.030	LB144361	20 Mar 2018	21 Mar 2018	17 Apr 2018	27 Mar 2018	17 Apr 2018	28 Mar 2018

#### Mercury in Soil

lercury in Soil							Moulou.	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.2-0.3	SE177041.001	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
3H1M_0.8-0.9	SE177041.002	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
3H2_0.2-0.3	SE177041.003	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
3H3_0.3-0.4	SE177041.004	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
BH4M_0.2-0.3	SE177041.005	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
3H5_0.3-0.4	SE177041.006	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
3H6_0.2-0.3	SE177041.007	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
3H7M_0.2-0.3	SE177041.008	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
3H7M_1.4-1.5	SE177041.009	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
3H8_0.3-0.4	SE177041.010	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
3H9_0.3-0.4	SE177041.011	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
3H10M_0.3-0.4	SE177041.012	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
3H10M_0.9-1.0	SE177041.013	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
H11_0.3-0.4	SE177041.014	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
H12_0.5-0.6	SE177041.015	LB144375	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018
H13M_0.3-0.4	SE177041.016	LB144375	20 Mar 2018	21 Mar 2018	17 Apr 2018	27 Mar 2018	17 Apr 2018	28 Mar 2018
H13M_0.9-1.0	SE177041.017	LB144375	20 Mar 2018	21 Mar 2018	17 Apr 2018	27 Mar 2018	17 Apr 2018	28 Mar 2018
3H13M_5.5-5.6	SE177041.018	LB144375	20 Mar 2018	21 Mar 2018	17 Apr 2018	27 Mar 2018	17 Apr 2018	28 Mar 2018
H14_0.4-0.5	SE177041.019	LB144375	20 Mar 2018	21 Mar 2018	17 Apr 2018	27 Mar 2018	17 Apr 2018	28 Mar 2018
3H15_0.3-0.4	SE177041.020	LB144380	20 Mar 2018	21 Mar 2018	17 Apr 2018	27 Mar 2018	17 Apr 2018	28 Mar 2018
3H16_0.4-0.5	SE177041.021	LB144380	20 Mar 2018	21 Mar 2018	17 Apr 2018	27 Mar 2018	17 Apr 2018	28 Mar 2018
3H17_0.5-0.6	SE177041.022	LB144380	20 Mar 2018	21 Mar 2018	17 Apr 2018	27 Mar 2018	17 Apr 2018	28 Mar 2018
3H17_1.0-1.1	SE177041.023	LB144380	20 Mar 2018	21 Mar 2018	17 Apr 2018	27 Mar 2018	17 Apr 2018	28 Mar 2018
3H17_11.6	SE177041.024	LB144380	20 Mar 2018	21 Mar 2018	17 Apr 2018	27 Mar 2018	17 Apr 2018	28 Mar 2018
3H18_0.5-0.6	SE177041.025	LB144380	20 Mar 2018	21 Mar 2018	17 Apr 2018	27 Mar 2018	17 Apr 2018	28 Mar 2018
H19_0.5-0.6	SE177041.026	LB144380	20 Mar 2018	21 Mar 2018	17 Apr 2018	27 Mar 2018	17 Apr 2018	28 Mar 2018
H20_0.4-0.5	SE177041.027	LB144380	20 Mar 2018	21 Mar 2018	17 Apr 2018	27 Mar 2018	17 Apr 2018	28 Mar 2018
3H21_0.4-0.5	SE177041.028	LB144380	20 Mar 2018	21 Mar 2018	17 Apr 2018	27 Mar 2018	17 Apr 2018	28 Mar 2018
2D1	SE177041.029	LB144380	19 Mar 2018	21 Mar 2018	16 Apr 2018	27 Mar 2018	16 Apr 2018	28 Mar 2018

Sample Name Sample No. QC Ref

28/3/2018

Method: ME_(ALI)_IENV/IAN312



Method: ME-(AU)-[ENV]AN002

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### Moisture Content (continued)

Moisture Content (continued							Method:	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.2-0.3	SE177041.001	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH1M_0.8-0.9	SE177041.002	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH2_0.2-0.3	SE177041.003	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH3_0.3-0.4	SE177041.004	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH4M_0.2-0.3	SE177041.005	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH5_0.3-0.4	SE177041.006	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH6_0.2-0.3	SE177041.007	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH7M_0.2-0.3	SE177041.008	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH7M_1.4-1.5	SE177041.009	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH8_0.3-0.4	SE177041.010	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH9_0.3-0.4	SE177041.011	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH10M_0.3-0.4	SE177041.012	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
			19 Mar 2018					
BH10M_0.9-1.0	SE177041.013	LB144307		21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH11_0.3-0.4	SE177041.014	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH12_0.5-0.6	SE177041.015	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH13M_0.3-0.4	SE177041.016	LB144307	20 Mar 2018	21 Mar 2018	03 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH13M_0.9-1.0	SE177041.017	LB144307	20 Mar 2018	21 Mar 2018	03 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH13M_5.5-5.6	SE177041.018	LB144307	20 Mar 2018	21 Mar 2018	03 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH14_0.4-0.5	SE177041.019	LB144307	20 Mar 2018	21 Mar 2018	03 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH15_0.3-0.4	SE177041.020	LB144307	20 Mar 2018	21 Mar 2018	03 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH16_0.4-0.5	SE177041.021	LB144307	20 Mar 2018	21 Mar 2018	03 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH17_0.5-0.6	SE177041.022	LB144307	20 Mar 2018	21 Mar 2018	03 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH17_1.0-1.1	SE177041.023	LB144307	20 Mar 2018	21 Mar 2018	03 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH17_11.6	SE177041.024	LB144307	20 Mar 2018	21 Mar 2018	03 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH18_0.5-0.6	SE177041.025	LB144307	20 Mar 2018	21 Mar 2018	03 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH19_0.5-0.6	SE177041.026	LB144307	20 Mar 2018	21 Mar 2018	03 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH20_0.4-0.5	SE177041.027	LB144307	20 Mar 2018	21 Mar 2018	03 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
BH21_0.4-0.5	SE177041.028	LB144307	20 Mar 2018	21 Mar 2018	03 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
QD1	SE177041.029	LB144307	19 Mar 2018	21 Mar 2018	02 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
QTB	SE177041.032	LB144307	20 Mar 2018	21 Mar 2018	03 Apr 2018	26 Mar 2018	31 Mar 2018	27 Mar 2018
L	02111041.002	20111001						
	02117041.002	20111007						
OC Pesticides in Soll					·		Method:	ME-(AU)-[ENV]AN420
OC Pesticides in Soil Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Method: Analysis Due	<mark>ME-(AU)-[ENV]AN420</mark> Analysed
OC Pesticides in Soil Sample Name BH1M_0.2-0.3	Sample No. SE177041.001	QC Ref LB144195	Sampled 19 Mar 2018	Received 21 Mar 2018	Extraction Due 02 Apr 2018	Extracted 23 Mar 2018	Method: Analysis Due 02 May 2018	ME-(AU)-[ENV]AN420 Analysed 27 Mar 2018
OC Pesticides in Soil Sample Name BH1M_0.2-0.3 BH1M_0.8-0.9	Sample No. SE177041.001 SE177041.002	QC Ref LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018	Received 21 Mar 2018 21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018	Method: Analysis Due 02 May 2018 02 May 2018	ME-(AU)-[ENV]AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil Sample Name BH1M_0.2-0.3 BH1M_0.8-0.9 BH2_0.2-0.3	Sample No. SE177041.001 SE177041.002 SE177041.003	QC Ref LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018 19 Mar 2018	Received 21 Mar 2018 21 Mar 2018 21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018 23 Mar 2018	Method: Analysis Due 02 May 2018 02 May 2018 02 May 2018 02 May 2018	ME-(AU)-[ENV]AN420 Analysed 27 Mar 2018 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil Sample Name BH1M_0.2-0.3 BH1M_0.8-0.9 BH2_0.2-0.3 BH3_0.3-0.4	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004	QC Ref LB144195 LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018 19 Mar 2018 19 Mar 2018 19 Mar 2018	Received 21 Mar 2018 21 Mar 2018 21 Mar 2018 21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018 02 Apr 2018 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018 23 Mar 2018 23 Mar 2018 23 Mar 2018	Method: Analysis Due 02 May 2018 02 May 2018 02 May 2018 02 May 2018 02 May 2018	ME-(AU)-[ENV]AN420 Analysed 27 Mar 2018 27 Mar 2018 27 Mar 2018 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil Sample Name BH1M_0.2-0.3 BH1M_0.8-0.9 BH2_0.2-0.3 BH3_0.3-0.4 BH4M_0.2-0.3	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018 19 Mar 2018 19 Mar 2018 19 Mar 2018 19 Mar 2018	Received 21 Mar 2018 21 Mar 2018 21 Mar 2018 21 Mar 2018 21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018 02 Apr 2018 02 Apr 2018 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018 23 Mar 2018 23 Mar 2018 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-[ENV]AN420 Analysed 27 Mar 2018 27 Mar 2018 27 Mar 2018 27 Mar 2018 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil Sample Name BH1M_0.2-0.3 BH1M_0.8-0.9 BH2_0.2-0.3 BH3_0.3-0.4 BH4M_0.2-0.3 BH5_0.3-0.4	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018 19 Mar 2018 19 Mar 2018 19 Mar 2018 19 Mar 2018 19 Mar 2018	Received 21 Mar 2018 21 Mar 2018 21 Mar 2018 21 Mar 2018 21 Mar 2018 21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018 02 Apr 2018 02 Apr 2018 02 Apr 2018 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018 23 Mar 2018 23 Mar 2018 23 Mar 2018 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-[ENV]AN420 Analysed 27 Mar 2018 27 Mar 2018 27 Mar 2018 27 Mar 2018 27 Mar 2018 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil Sample Name BH1M_0.2-0.3 BH1M_0.8-0.9 BH2_0.2-0.3 BH3_0.3-0.4 BH4M_0.2-0.3 BH5_0.3-0.4 BH6_0.2-0.3	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018 19 Mar 2018 19 Mar 2018 19 Mar 2018 19 Mar 2018 19 Mar 2018	Received 21 Mar 2018 21 Mar 2018 21 Mar 2018 21 Mar 2018 21 Mar 2018 21 Mar 2018 21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018 02 Apr 2018 02 Apr 2018 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018 23 Mar 2018 23 Mar 2018 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-[ENV]AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil           Sample Name           BH1M_0.2-0.3           BH1M_0.8-0.9           BH2_0.2-0.3           BH3_0.3-0.4           BH4M_0.2-0.3           BH5_0.3-0.4           BH5_0.2-0.3           BH5_0.2-0.3	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.008	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018	Received 21 Mar 2018 21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-[ENV]AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil           Sample Name           BH1M_0.2-0.3           BH1M_0.8-0.9           BH2_0.2-0.3           BH3_0.3-0.4           BH4M_0.2-0.3           BH5_0.3-0.4           BH6_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.008 SE177041.009	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018	Received           21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-(ENV)(AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil           Sample Name           BH1M_0.2-0.3           BH1M_0.8-0.9           BH2_0.2-0.3           BH3_0.3-0.4           BH4M_0.2-0.3           BH5_0.3-0.4           BH5_0.2-0.3           BH5_0.2-0.3	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.008	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018	Received 21 Mar 2018 21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-[ENV]AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil           Sample Name           BH1M_0.2-0.3           BH1M_0.8-0.9           BH2_0.2-0.3           BH3_0.3-0.4           BH4M_0.2-0.3           BH5_0.3-0.4           BH6_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.008 SE177041.009	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018	Received           21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-(ENV)(AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil           Sample Name           BH1M_0.2-0.3           BH1M_0.8-0.9           BH2_0.2-0.3           BH4M_0.2-0.3           BH4M_0.2-0.3           BH5_0.3-0.4           BH6_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.008 SE177041.009 SE177041.010	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018	Received           21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-(ENV)(AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil           Sample Name           BH1M_0.2-0.3           BH1M_0.8-0.9           BH2_0.2-0.3           BH4M_0.2-0.3           BH4M_0.2-0.3           BH5_0.3-0.4           BH6_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.008 SE177041.009 SE177041.010 SE177041.011	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018	Received           21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-(ENV)(AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil           Sample Name           BH1M_0.2-0.3           BH1M_0.8-0.9           BH2_0.2-0.3           BH4M_0.2-0.3           BH4M_0.2-0.3           BH4_0.2-0.3           BH4_0.2-0.3           BH5_0.3-0.4           BH6_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.008 SE177041.010 SE177041.011 SE177041.012	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018	Received           21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-(ENV)(AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil Sample Name BH1M_0.2-0.3 BH1M_0.8-0.9 BH2_0.2-0.3 BH3_0.3-0.4 BH4M_0.2-0.3 BH4M_0.2-0.3 BH5_0.3-0.4 BH6_0.2-0.3 BH7M_0.2-0.3 BH7M_1.4-1.5 BH8_0.3-0.4 BH9_0.3-0.4 BH10M_0.3-0.4 BH10M_0.9-1.0	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.008 SE177041.010 SE177041.010 SE177041.011 SE177041.012 SE177041.013	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018	Received           21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-(ENV)(AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil Sample Name BH1M_0.2-0.3 BH1M_0.8-0.9 BH2_0.2-0.3 BH3_0.3-0.4 BH4M_0.2-0.3 BH4M_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.3 BH7M_1.4-1.5 BH8_0.3-0.4 BH9_0.3-0.4 BH10M_0.3-0.4 BH10M_0.9-1.0 BH11_0.3-0.4	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.008 SE177041.010 SE177041.010 SE177041.011 SE177041.013 SE177041.014	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018	Received           21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-[ENV]AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil Sample Name BH1M_0.2-0.3 BH1M_0.8-0.9 BH2_0.2-0.3 BH3_0.3-0.4 BH4M_0.2-0.3 BH5_0.3-0.4 BH6_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.4 BH10_0.3-0.4 BH10M_0.3-0.4 BH10M_0.9-1.0 BH11_0.3-0.4 BH12_0.5-0.6	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.009 SE177041.010 SE177041.010 SE177041.011 SE177041.013 SE177041.014 SE177041.015	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195	Sampled 19 Mar 2018 19 Mar 2018	Received           21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-(ENV)(AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil Sample Name BH1M_0.2-0.3 BH1M_0.8-0.9 BH2_0.2-0.3 BH3_0.3-0.4 BH4M_0.2-0.3 BH5_0.3-0.4 BH6_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.4 BH10_0.3-0.4 BH10M_0.9-1.0 BH11_0.3-0.4 BH12_0.5-0.6 BH13M_0.3-0.4	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.009 SE177041.010 SE177041.010 SE177041.011 SE177041.013 SE177041.014 SE177041.015 SE177041.016	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144196 LB144196	Sampled 19 Mar 2018 19 Mar 2018 20 Mar 2018	Received           21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-[ENV]AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil Sample Name BH1M_0.2-0.3 BH1M_0.8-0.9 BH2_0.2-0.3 BH3_0.3-0.4 BH4M_0.2-0.3 BH5_0.3-0.4 BH6_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.4 BH10_0.3-0.4 BH10M_0.9-1.0 BH11_0.3-0.4 BH12_0.5-0.6 BH13M_0.3-0.4 BH13M_0.9-1.0	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.009 SE177041.010 SE177041.010 SE177041.011 SE177041.013 SE177041.014 SE177041.015 SE177041.016 SE177041.017	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144196 LB144196	Sampled 19 Mar 2018 19 Mar 2018 20 Mar 2018 20 Mar 2018	Received           21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018 03 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-[ENV]AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil           Sample Name           BH1M_0.2-0.3           BH2_0.2-0.3           BH4_0.2-0.3           BH4_0.2-0.3           BH5_0.3-0.4           BH6_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_1.4-1.5           BH8_0.3-0.4           BH10M_0.3-0.4           BH10M_0.9-1.0           BH112_0.5-0.6           BH13M_0.9-1.0           BH13M_0.9-1.0           BH13M_0.5-5.6	Sample No.           SE177041.001           SE177041.002           SE177041.003           SE177041.003           SE177041.004           SE177041.005           SE177041.006           SE177041.007           SE177041.008           SE177041.009           SE177041.010           SE177041.010           SE177041.011           SE177041.012           SE177041.013           SE177041.014           SE177041.015           SE177041.016           SE177041.017           SE177041.018	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144196 LB144196 LB144196	Sampled 19 Mar 2018 19 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018	Received           21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-[ENV]AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil           Sample Name           BH1M_0.2-0.3           BH2_0.2-0.3           BH4_0.2-0.3           BH4_0.2-0.3           BH5_0.3-0.4           BH6_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.4           BH10_0.3-0.4           BH10_0.9-1.0           BH11_0.3-0.4           BH13_0.3-0.4           BH13_0.3-0.4           BH13_0.3-0.4           BH13_0.3-0.4           BH14_0.4-0.5           BH14_0.4-0.5           BH15_0.3-0.4	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.006 SE177041.006 SE177041.007 SE177041.009 SE177041.010 SE177041.011 SE177041.011 SE177041.013 SE177041.014 SE177041.015 SE177041.016 SE177041.017 SE177041.018 SE177041.019 SE177041.019 SE177041.020	QC Ref           LB144195           LB144196	Sampled 19 Mar 2018 19 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018	Received           21 Mar 2018	Extraction Due 02 Apr 2018 02 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018	ME-(AU)-[ENV]AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil Sample Name BH1M_0.2-0.3 BH1M_0.8-0.9 BH2_0.2-0.3 BH5_0.3-0.4 BH4M_0.2-0.3 BH5_0.3-0.4 BH6_0.2-0.3 BH7M_0.2-0.3 BH7M_0.2-0.3 BH7M_1.4-1.5 BH8_0.3-0.4 BH10M_0.3-0.4 BH10M_0.3-0.4 BH10M_0.9-1.0 BH11_0.3-0.4 BH13M_0.3-0.4 BH13M_0.3-0.4 BH13M_0.3-0.4 BH13M_0.3-0.4 BH13M_0.3-0.4 BH13M_0.3-0.4 BH13M_0.3-0.4 BH13M_0.3-0.4 BH13M_0.3-0.4 BH13M_0.3-0.4 BH13M_0.3-0.4 BH14_0.4-0.5 BH15_0.3-0.4 BH16_0.4-0.5	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.006 SE177041.006 SE177041.007 SE177041.009 SE177041.010 SE177041.010 SE177041.011 SE177041.013 SE177041.014 SE177041.015 SE177041.016 SE177041.017 SE177041.018 SE177041.019 SE177041.020 SE177041.021	QC Ref           LB144195           LB144196	Sampled 19 Mar 2018 19 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018	Received           21 Mar 2018           21 Mar 201	Extraction Due 02 Apr 2018 02 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018           02 May 201	ME-(AU)-(ENV)(AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil           Sample Name           BH1M_0.2-0.3           BH1M_0.8-0.9           BH2_0.2-0.3           BH4M_0.2-0.3           BH4M_0.2-0.3           BH5_0.3-0.4           BH6_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.3-0.4           BH10M_0.3-0.4           BH10M_0.9-1.0           BH11_0.3-0.4           BH13_0.3-0.4           BH14_0.4-0.5           BH14_0.4-0.5           BH16_0.4-0.5           BH16_0.4-0.5           BH17_0.5-0.6	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.006 SE177041.006 SE177041.007 SE177041.009 SE177041.010 SE177041.010 SE177041.011 SE177041.014 SE177041.015 SE177041.016 SE177041.016 SE177041.017 SE177041.019 SE177041.019 SE177041.019 SE177041.020 SE177041.021 SE177041.021	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196	Sampled 19 Mar 2018 19 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 20	Received           21 Mar 2018           21 Mar 201	Extraction Due 02 Apr 2018 02 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018           02 May 201	ME-(AU)-(ENV)(AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil           Sample Name           BH1M_0.2-0.3           BH1M_0.8-0.9           BH2_0.2-0.3           BH4_0.2-0.3           BH4_0.2-0.3           BH5_0.3-0.4           BH6_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.4           BH_0.3-0.4           BH10M_0.3-0.4           BH11_0.3-0.4           BH13M_0.3-0.4           BH13M_0.3-0.4           BH13M_0.3-0.4           BH13M_0.3-0.4           BH13M_0.3-0.4           BH13M_0.3-0.4           BH13M_0.3-0.4           BH13M_0.3-0.4           BH15_0.3-0.4           BH16_0.4-0.5           BH16_0.4-0.5           BH170.5-0.6           BH171.0-1.1	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.009 SE177041.010 SE177041.010 SE177041.011 SE177041.014 SE177041.015 SE177041.015 SE177041.016 SE177041.017 SE177041.019 SE177041.019 SE177041.020 SE177041.021 SE177041.021 SE177041.023	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196	Sampled 19 Mar 2018 19 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018	Received           21 Mar 2018           21 Mar 201	Extraction Due 02 Apr 2018 02 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03	Extracted 23 Mar 2018 23 Mar 2018	Method:           Analysis Due           02 May 2018           02 May 201	ME-(AU)-(ENV)(AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil           Sample Name           BH1M_0.2-0.3           BH1M_0.8-0.9           BH2_0.2-0.3           BH4_0.2-0.3           BH4_0.2-0.3           BH5_0.3-0.4           BH6_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.4           BH10M_0.3-0.4           BH110_0.9-1.0           BH13M_0.9-1.0           BH14_0.4-0.5           BH17_0.5-0.6           BH17_1.0-1.1           BH17_11.6	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.009 SE177041.010 SE177041.010 SE177041.011 SE177041.015 SE177041.015 SE177041.016 SE177041.017 SE177041.019 SE177041.019 SE177041.020 SE177041.021 SE177041.021 SE177041.023 SE177041.024	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196	Sampled 19 Mar 2018 19 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 20	Received           21 Mar 2018           21 Mar 201	Extraction Due 02 Apr 2018 02 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03	Extracted 23 Mar 2018 23 Mar	Method:           Analysis Due           02 May 2018           02 May 201	ME-(AU)-(ENV)(AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil           Sample Name           BH1M_0.2-0.3           BH1M_0.8-0.9           BH2_0.2-0.3           BH4M_0.2-0.3           BH4M_0.2-0.3           BH5_0.3-0.4           BH6_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.4           BH10M_0.3-0.4           BH120_0.5-0.6           BH13M_0.3-0.4           BH13M_0.3-0.4           BH13M_0.3-0.4           BH13M_0.3-0.4           BH14_0.4-0.5           BH14_0.4-0.5           BH17_0.5-0.6           BH17_1.0-1.1           BH17_1.0-1.6           BH18_0.5-0.6	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.009 SE177041.010 SE177041.010 SE177041.011 SE177041.013 SE177041.014 SE177041.016 SE177041.016 SE177041.018 SE177041.019 SE177041.020 SE177041.021 SE177041.023 SE177041.023 SE177041.024 SE177041.025	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196	Sampled 19 Mar 2018 19 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 20	Roceived           21 Mar 2018           21 Mar 201	Extraction Due 02 Apr 2018 02 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03	Extracted 23 Mar 2018 23 Mar	Method:           Analysis Due           02 May 2018           02 May 201	ME-(AU)-(ENV)(AN420 Analysed 27 Mar 2018 27 Mar 2018
OC Pesticides in Soil           Sample Name           BH1M_0.2-0.3           BH1M_0.8-0.9           BH2_0.2-0.3           BH4_0.2-0.3           BH4_0.2-0.3           BH5_0.3-0.4           BH6_0.2-0.3           BH7M_0.2-0.3           BH7M_0.2-0.4           BH10M_0.3-0.4           BH10M_0.9-1.0           BH13M_0.3-0.4           BH13M_0.3-0.4           BH13M_0.3-0.4           BH13M_0.3-0.4           BH14_0.4-0.5           BH15_0.3-0.4           BH16_0.4-0.5           BH17_0.5-0.6           BH17_1.0-1.1           BH17_11.6	Sample No. SE177041.001 SE177041.002 SE177041.003 SE177041.004 SE177041.005 SE177041.006 SE177041.007 SE177041.009 SE177041.010 SE177041.010 SE177041.011 SE177041.015 SE177041.015 SE177041.016 SE177041.017 SE177041.019 SE177041.019 SE177041.020 SE177041.021 SE177041.021 SE177041.023 SE177041.024	QC Ref LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144195 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196 LB144196	Sampled 19 Mar 2018 19 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 2018 20 Mar 20	Received           21 Mar 2018           21 Mar 201	Extraction Due 02 Apr 2018 02 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03 Apr 2018 03	Extracted 23 Mar 2018 23 Mar	Method:           Analysis Due           02 May 2018           02 May 201	ME-(AU)-(ENV)(AN420 Analysed 27 Mar 2018 27 Mar 2018



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### Method: ME-(AU)-[ENV]AN420 OC Pesticides in Soil (continued) Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH21 0.4-0.5 SE177041.028 I B144196 20 Mar 2018 21 Mar 2018 03 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 QD1 SE177041.029 LB144196 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 27 Mar 2018 02 May 2018 **OP Pesticides in Soil** Method: ME-(AU)-IENVIAN420 QC Ref Sample Name Sample No. Sampled Received Extraction Due Extracted Analysis Due Analysed BH1M_0.2-0.3 SE177041.001 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH1M 0.8-0.9 SE177041.002 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH2 0.2-0.3 SE177041.003 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 23 Mar 2018 BH3_0.3-0.4 SE177041.004 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 02 May 2018 27 Mar 2018 BH4M 0 2-0 3 SE177041 005 I B144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH5 0.3-0.4 SE177041.006 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 SE177041.007 LB144195 19 Mar 2018 BH6_0.2-0.3 21 Mar 2018 02 Apr 2018 23 Mar 2018 27 Mar 2018 02 May 2018 SE177041.008 LB144195 19 Mar 2018 21 Mar 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH7M_0.2-0.3 02 Apr 2018 BH7M_1.4-1.5 SE177041.009 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH8 0.3-0.4 SE177041.010 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH9_0.3-0.4 SE177041.011 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH10M 0.3-0.4 SE177041.012 LB144195 21 Mar 2018 02 Apr 2018 02 May 2018 27 Mar 2018 19 Mar 2018 23 Mar 2018 BH10M 0 9-1 0 SE177041 013 I B144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH11_0.3-0.4 SE177041.014 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH12 0.5-0.6 SE177041.015 LB144196 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH13M 0.3-0.4 SE177041.016 LB144196 20 Mar 2018 21 Mar 2018 03 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH13M_0.9-1.0 SE177041.017 LB144196 20 Mar 2018 21 Mar 2018 03 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH13M 5.5-5.6 SE177041.018 LB144196 20 Mar 2018 21 Mar 2018 03 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH14_0.4-0.5 SE177041.019 LB144196 20 Mar 2018 21 Mar 2018 03 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH15 0.3-0.4 SE177041.020 LB144196 20 Mar 2018 21 Mar 2018 03 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 SE177041.021 LB144196 20 Mar 2018 21 Mar 2018 03 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH16_0.4-0.5 BH17_0.5-0.6 SE177041.022 LB144196 20 Mar 2018 21 Mar 2018 03 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH17 1.0-1.1 SE177041.023 LB144196 20 Mar 2018 21 Mar 2018 03 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH17_1.-1.6 SE177041.024 LB144196 20 Mar 2018 21 Mar 2018 03 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH18 0.5-0.6 SE177041.025 LB144196 20 Mar 2018 21 Mar 2018 03 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 23 Mar 2018 02 May 2018 BH19 0.5-0.6 SE177041.026 LB144196 20 Mar 2018 21 Mar 2018 03 Apr 2018 27 Mar 2018 BH20 0.4-0.5 SE177041.027 LB144196 20 Mar 2018 21 Mar 2018 03 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH21 0.4-0.5 SE177041.028 LB144196 20 Mar 2018 21 Mar 2018 03 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 19 Mar 2018 QD1 SE177041.029 LB144196 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-IENVIAN420 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH1M 0.2-0.3 SE177041.001 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH1M_0.8-0.9 SE177041.002 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH2 0.2-0.3 SE177041.003 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 23 Mar 2018 BH3 0.3-0.4 SE177041.004 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 02 May 2018 27 Mar 2018 BH4M_0.2-0.3 SE177041.005 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH5 0.3-0.4 SE177041.006 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH6 0.2-0.3 SE177041.007 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH7M 0.2-0.3 SE177041.008 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH7M_1.4-1.5 SE177041.009 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH8_0.3-0.4 SE177041.010 LB144195 21 Mar 2018 02 Apr 2018 02 May 2018 27 Mar 2018 19 Mar 2018 23 Mar 2018 BH9 0.3-0.4 SE177041.011 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH10M_0.3-0.4 SE177041.012 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH10M 0.9-1.0 SE177041.013 LB144195 19 Mar 2018 21 Mar 2018 02 Apr 2018 23 Mar 2018 02 May 2018 27 Mar 2018 BH11 0.3-0.4 02 May 2018 SE177041.014 LB144195 21 Mar 2018 19 Mar 2018 02 Apr 2018 23 Mar 2018 27 Mar 2018

21 Mar 2018

21 Mar 2018

21 Mar 2018

21 Mar 2018

21 Mar 2018

21 Mar 2018

21 Mar 2018

21 Mar 2018

21 Mar 2018

21 Mar 2018

02 Apr 2018

03 Apr 2018

03 Apr 2018

03 Apr 2018

03 Apr 2018

03 Apr 2018

03 Apr 2018

03 Apr 2018

03 Apr 2018

03 Apr 2018

23 Mar 2018

02 May 2018

02 May 2018

02 May 2018

02 May 2018

02 May 2018

02 May 2018

02 May 2018

02 May 2018

02 May 2018

02 May 2018

BH12 0.5-0.6

BH13M 0.3-0.4

BH13M_0.9-1.0

BH13M_5.5-5.6

BH14 0.4-0.5

BH15_0.3-0.4

BH16 0.4-0.5

BH17_0.5-0.6

BH17 1.0-1.1

SE177041.015

SE177041.016

SE177041.017

SE177041.018

SE177041.019

SE177041.020

SE177041.021

SE177041.022

SE177041.023

SE177041.024

LB144196

19 Mar 2018

20 Mar 2018

20 Mar 2018

20 Mar 2018

20 Mar 2018

20 Mar 2018

20 Mar 2018

20 Mar 2018

20 Mar 2018

20 Mar 2018

27 Mar 2018

27 Mar 2018

27 Mar 2018

27 Mar 2018

27 Mar 2018

27 Mar 2018

27 Mar 2018 27 Mar 2018

27 Mar 2018

27 Mar 2018



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAH (Polynuclear Aroma	tic Hydrocarbons) in Soil (co	ontinued)					Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH18_0.5-0.6	SE177041.025	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH19_0.5-0.6	SE177041.026	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH20_0.4-0.5	SE177041.027	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH21_0.4-0.5	SE177041.028	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
QD1	SE177041.029	LB144196	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
PCBs in Soil							Method:	ME-(AU)-[ENV]AN42

							Weblog.	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.2-0.3	SE177041.001	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH1M_0.8-0.9	SE177041.002	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH2_0.2-0.3	SE177041.003	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH3_0.3-0.4	SE177041.004	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH4M_0.2-0.3	SE177041.005	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH5_0.3-0.4	SE177041.006	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH6_0.2-0.3	SE177041.007	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH7M_0.2-0.3	SE177041.008	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH7M_1.4-1.5	SE177041.009	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH8_0.3-0.4	SE177041.010	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH9_0.3-0.4	SE177041.011	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH10M_0.3-0.4	SE177041.012	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH10M_0.9-1.0	SE177041.013	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH11_0.3-0.4	SE177041.014	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH12_0.5-0.6	SE177041.015	LB144196	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH13M_0.3-0.4	SE177041.016	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH13M_0.9-1.0	SE177041.017	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH13M_5.5-5.6	SE177041.018	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH14_0.4-0.5	SE177041.019	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH15_0.3-0.4	SE177041.020	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH16_0.4-0.5	SE177041.021	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH17_0.5-0.6	SE177041.022	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH17_1.0-1.1	SE177041.023	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH17_11.6	SE177041.024	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH18_0.5-0.6	SE177041.025	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH19_0.5-0.6	SE177041.026	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH20_0.4-0.5	SE177041.027	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH21_0.4-0.5	SE177041.028	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

SE177041.029

LB144196

19 Mar 2018

Method: ME-(AU)-[ENV]AN040/AN320

27 Mar 2018

02 May 2018

Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SE177041.001	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.002	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.003	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.004	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.005	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.006	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.007	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.008	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.009	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.010	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.011	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.012	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.013	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.014	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.015	LB144414	19 Mar 2018	21 Mar 2018	15 Sep 2018	27 Mar 2018	15 Sep 2018	28 Mar 2018
SE177041.016	LB144414	20 Mar 2018	21 Mar 2018	16 Sep 2018	27 Mar 2018	16 Sep 2018	28 Mar 2018
SE177041.017	LB144414	20 Mar 2018	21 Mar 2018	16 Sep 2018	27 Mar 2018	16 Sep 2018	28 Mar 2018
SE177041.018	LB144414	20 Mar 2018	21 Mar 2018	16 Sep 2018	27 Mar 2018	16 Sep 2018	28 Mar 2018
SE177041.019	LB144414	20 Mar 2018	21 Mar 2018	16 Sep 2018	27 Mar 2018	16 Sep 2018	28 Mar 2018
SE177041.020	LB144415	20 Mar 2018	21 Mar 2018	16 Sep 2018	27 Mar 2018	16 Sep 2018	28 Mar 2018
SE177041.021	LB144415	20 Mar 2018	21 Mar 2018	16 Sep 2018	27 Mar 2018	16 Sep 2018	28 Mar 2018
	SE177041.001           SE177041.002           SE177041.003           SE177041.004           SE177041.005           SE177041.006           SE177041.007           SE177041.008           SE177041.009           SE177041.009           SE177041.010           SE177041.010           SE177041.011           SE177041.012           SE177041.013           SE177041.014           SE177041.015           SE177041.016           SE177041.017           SE177041.018           SE177041.019           SE177041.020	SE177041.001         LB144414           SE177041.002         LB144414           SE177041.003         LB144414           SE177041.004         LB144414           SE177041.005         LB144414           SE177041.006         LB144414           SE177041.007         LB144414           SE177041.007         LB144414           SE177041.008         LB144414           SE177041.009         LB144414           SE177041.009         LB144414           SE177041.010         LB144414           SE177041.011         LB144414           SE177041.012         LB144414           SE177041.013         LB144414           SE177041.015         LB144414           SE177041.015         LB144414           SE177041.015         LB144414           SE177041.016         LB144414           SE177041.017         LB144414           SE177041.018         LB144414           SE177041.019         LB144414           SE177041.019         LB144414           SE177041.019         LB144414           SE177041.019         LB144414	SE177041.001         LB144414         19 Mar 2018           SE177041.002         LB144414         19 Mar 2018           SE177041.003         LB144414         19 Mar 2018           SE177041.004         LB144414         19 Mar 2018           SE177041.005         LB144414         19 Mar 2018           SE177041.006         LB144414         19 Mar 2018           SE177041.006         LB144414         19 Mar 2018           SE177041.007         LB144414         19 Mar 2018           SE177041.008         LB144414         19 Mar 2018           SE177041.009         LB144414         19 Mar 2018           SE177041.009         LB144414         19 Mar 2018           SE177041.010         LB144414         19 Mar 2018           SE177041.010         LB144414         19 Mar 2018           SE177041.011         LB144414         19 Mar 2018           SE177041.012         LB144414         19 Mar 2018           SE177041.015         LB144414	SE177041.001         LB144414         19 Mar 2018         21 Mar 2018           SE177041.002         LB144414         19 Mar 2018         21 Mar 2018           SE177041.003         LB144414         19 Mar 2018         21 Mar 2018           SE177041.004         LB144414         19 Mar 2018         21 Mar 2018           SE177041.005         LB144414         19 Mar 2018         21 Mar 2018           SE177041.006         LB144414         19 Mar 2018         21 Mar 2018           SE177041.006         LB144414         19 Mar 2018         21 Mar 2018           SE177041.007         LB144414         19 Mar 2018         21 Mar 2018           SE177041.008         LB144414         19 Mar 2018         21 Mar 2018           SE177041.009         LB144414         19 Mar 2018         21 Mar 2018           SE177041.010         LB144414         19 Mar 2018         21 Mar 2018           SE177041.011         LB144414         19 Mar 2018         21 Mar 2018           SE177041.012         LB144414         19 Mar 2018         21 Mar 2018           SE177041.013         LB144414         19 Mar 2018         21 Mar 2018           SE177041.014         LB144414         19 Mar 2018         21 Mar 2018           SE177041.015 <t< td=""><td>SE177041.001         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.002         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.003         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.004         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.005         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.006         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.006         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.007         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.008         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.009         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.010         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.010         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.011         LB144414         19 Mar 2018</td><td>SE177041.001LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.002LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.003LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.004LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.005LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.006LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.007LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.008LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.009LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.009LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.010LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.011LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.012LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.014LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.014LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.015LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018<t< td=""><td>SE177041.001LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.002LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.003LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.004LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.005LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.006LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.006LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.007LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.008LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.009LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.010LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.011LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.012LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.013LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 20181</td></t<></td></t<>	SE177041.001         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.002         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.003         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.004         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.005         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.006         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.006         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.007         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.008         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.009         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.010         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.010         LB144414         19 Mar 2018         21 Mar 2018         15 Sep 2018           SE177041.011         LB144414         19 Mar 2018	SE177041.001LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.002LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.003LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.004LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.005LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.006LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.007LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.008LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.009LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.009LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.010LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.011LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.012LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.014LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.014LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018SE177041.015LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 2018 <t< td=""><td>SE177041.001LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.002LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.003LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.004LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.005LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.006LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.006LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.007LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.008LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.009LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.010LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.011LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.012LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.013LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 20181</td></t<>	SE177041.001LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.002LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.003LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.004LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.005LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.006LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.006LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.007LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.008LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.009LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.010LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.011LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.012LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 201815 Sep 2018SE177041.013LB14441419 Mar 201821 Mar 201815 Sep 201827 Mar 20181

21 Mar 2018

02 Apr 2018

23 Mar 2018

QD1



Method: ME-(AU)-[ENV]AN403

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES (continued) Method: ME-(AU)-[ENV]AN040/AN320 Sample Name Sample No. QC Ref Sampled Analysis Due Analysed Received Extraction Due Extracted BH17 0.5-0.6 SE177041.022 LB144415 20 Mar 2018 21 Mar 2018 16 Sep 2018 27 Mar 2018 16 Sep 2018 28 Mar 2018 BH17_1.0-1.1 SE177041.023 LB144415 27 Mar 2018 16 Sep 2018 28 Mar 2018 20 Mar 2018 21 Mar 2018 16 Sep 2018 BH17_1.-1.6 SE177041.024 LB144415 20 Mar 2018 21 Mar 2018 16 Sep 2018 27 Mar 2018 16 Sep 2018 28 Mar 2018 BH18_0.5-0.6 SE177041.025 LB144415 20 Mar 2018 21 Mar 2018 27 Mar 2018 16 Sep 2018 28 Mar 2018 16 Sep 2018 BH19 0.5-0.6 SE177041.026 LB144415 20 Mar 2018 21 Mar 2018 27 Mar 2018 16 Sep 2018 28 Mar 2018 16 Sep 2018 BH20_0.4-0.5 SE177041.027 LB144415 20 Mar 2018 21 Mar 2018 16 Sep 2018 27 Mar 2018 16 Sep 2018 28 Mar 2018 BH21_0.4-0.5 SE177041.028 LB144415 20 Mar 2018 21 Mar 2018 16 Sep 2018 28 Mar 2018 16 Sep 2018 27 Mar 2018 QD1 SE177041.029 LB144415 19 Mar 2018 21 Mar 2018 15 Sep 2018 27 Mar 2018 15 Sep 2018 28 Mar 2018 Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

,								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE177041.030	LB144357	20 Mar 2018	21 Mar 2018	16 Sep 2018	27 Mar 2018	16 Sep 2018	28 Mar 2018

#### TRH (Total Recoverable Hydrocarbons) in Soil

	iyarooarbono, in con						moulou.	me ( to) [eitt] att
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.2-0.3	SE177041.001	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH1M_0.8-0.9	SE177041.002	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH2_0.2-0.3	SE177041.003	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH3_0.3-0.4	SE177041.004	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH4M_0.2-0.3	SE177041.005	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH5_0.3-0.4	SE177041.006	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH6_0.2-0.3	SE177041.007	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH7M_0.2-0.3	SE177041.008	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH7M_1.4-1.5	SE177041.009	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH8_0.3-0.4	SE177041.010	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH9_0.3-0.4	SE177041.011	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH10M_0.3-0.4	SE177041.012	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH10M_0.9-1.0	SE177041.013	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH11_0.3-0.4	SE177041.014	LB144195	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH12_0.5-0.6	SE177041.015	LB144196	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH13M_0.3-0.4	SE177041.016	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH13M_0.9-1.0	SE177041.017	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH13M_5.5-5.6	SE177041.018	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH14_0.4-0.5	SE177041.019	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH15_0.3-0.4	SE177041.020	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH16_0.4-0.5	SE177041.021	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH17_0.5-0.6	SE177041.022	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH17_1.0-1.1	SE177041.023	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH17_11.6	SE177041.024	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH18_0.5-0.6	SE177041.025	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH19_0.5-0.6	SE177041.026	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH20_0.4-0.5	SE177041.027	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH21_0.4-0.5	SE177041.028	LB144196	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
QD1	SE177041.029	LB144196	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
TRH (Total Recoverable H	lydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE177041.030	LB144250	20 Mar 2018	21 Mar 2018	27 Mar 2018	23 Mar 2018	02 May 2018	28 Mar 2018

#### Method: ME-(AU)-[ENV]AN433

V003 III 00II							Wouldu.	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.2-0.3	SE177041.001	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH1M_0.8-0.9	SE177041.002	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH2_0.2-0.3	SE177041.003	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH3_0.3-0.4	SE177041.004	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH4M_0.2-0.3	SE177041.005	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH5_0.3-0.4	SE177041.006	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH6_0.2-0.3	SE177041.007	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH7M_0.2-0.3	SE177041.008	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH7M_1.4-1.5	SE177041.009	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018

VOC's in Soll



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### VOC's in Soil (continued)

VOC's in Soil (continued)							Method: I	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH8_0.3-0.4	SE177041.010	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH9_0.3-0.4	SE177041.011	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH10M_0.3-0.4	SE177041.012	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH10M_0.9-1.0	SE177041.013	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH11_0.3-0.4	SE177041.014	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH12_0.5-0.6	SE177041.015	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH13M_0.3-0.4	SE177041.016	LB144209	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH13M_0.9-1.0	SE177041.017	LB144209	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH13M_5.5-5.6	SE177041.018	LB144209	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH14_0.4-0.5	SE177041.019	LB144209	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH15_0.3-0.4	SE177041.020	LB144209	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH16_0.4-0.5	SE177041.021	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
BH17_0.5-0.6	SE177041.022	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
BH17_1.0-1.1	SE177041.023	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
BH17_11.6	SE177041.024	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
BH18_0.5-0.6	SE177041.025	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
BH19_0.5-0.6	SE177041.026	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
BH20_0.4-0.5	SE177041.027	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
BH21_0.4-0.5	SE177041.028	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
QD1	SE177041.029	LB144210	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
QTS	SE177041.031	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
QTB	SE177041.032	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
/OCs in Water							Method: I	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE177041.030	LB144312	20 Mar 2018	21 Mar 2018	27 Mar 2018	26 Mar 2018	05 May 2018	27 Mar 2018

#### Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-IENVIAN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.2-0.3	SE177041.001	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH1M_0.8-0.9	SE177041.002	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH2_0.2-0.3	SE177041.003	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH3_0.3-0.4	SE177041.004	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH4M_0.2-0.3	SE177041.005	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH5_0.3-0.4	SE177041.006	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH6_0.2-0.3	SE177041.007	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH7M_0.2-0.3	SE177041.008	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH7M_1.4-1.5	SE177041.009	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH8_0.3-0.4	SE177041.010	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH9_0.3-0.4	SE177041.011	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH10M_0.3-0.4	SE177041.012	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH10M_0.9-1.0	SE177041.013	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH11_0.3-0.4	SE177041.014	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH12_0.5-0.6	SE177041.015	LB144209	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH13M_0.3-0.4	SE177041.016	LB144209	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH13M_0.9-1.0	SE177041.017	LB144209	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH13M_5.5-5.6	SE177041.018	LB144209	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH14_0.4-0.5	SE177041.019	LB144209	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH15_0.3-0.4	SE177041.020	LB144209	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
BH16_0.4-0.5	SE177041.021	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
BH17_0.5-0.6	SE177041.022	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
BH17_1.0-1.1	SE177041.023	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
BH17_11.6	SE177041.024	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
BH18_0.5-0.6	SE177041.025	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
BH19_0.5-0.6	SE177041.026	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
BH20_0.4-0.5	SE177041.027	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
BH21_0.4-0.5	SE177041.028	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
QD1	SE177041.029	LB144210	19 Mar 2018	21 Mar 2018	02 Apr 2018	23 Mar 2018	02 May 2018	26 Mar 2018
QTS	SE177041.031	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
QTB	SE177041.032	LB144210	20 Mar 2018	21 Mar 2018	03 Apr 2018	23 Mar 2018	02 May 2018	27 Mar 2018
							•	



# HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydroca	arbons in Water						Method:	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE177041.030	LB144312	20 Mar 2018	21 Mar 2018	27 Mar 2018	26 Mar 2018	05 May 2018	27 Mar 2018



Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

C Pesticides in Soil				Method: M	E-(AU)-[ENV]/
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
Fetrachloro-m-xylene (TCMX) (Surrogate)	BH1M_0.2-0.3	SE177041.001	%	60 - 130%	111
	BH2_0.2-0.3	SE177041.003	%	60 - 130%	113
	BH3_0.3-0.4	SE177041.004	%	60 - 130%	107
	BH4M_0.2-0.3	SE177041.005	%	60 - 130%	113
	BH5_0.3-0.4	SE177041.006	%	60 - 130%	115
	BH6_0.2-0.3	SE177041.007	%	60 - 130%	111
	BH7M_0.2-0.3	SE177041.008	%	60 - 130%	117
	BH8 0.3-0.4	SE177041.010	%	60 - 130%	110
	BH9_0.3-0.4	SE177041.011	%	60 - 130%	115
	BH10M_0.3-0.4	SE177041.012	%	60 - 130%	113
	BH11_0.3-0.4	SE177041.012	%	60 - 130%	115
	BH12_0.5-0.6	SE177041.015	%	60 - 130%	85
			%		93
	BH13M_0.3-0.4	SE177041.016		60 - 130%	
	BH14_0.4-0.5	SE177041.019	%	60 - 130%	93
	BH15_0.3-0.4	SE177041.020	%	60 - 130%	86
	BH16_0.4-0.5	SE177041.021	%	60 - 130%	82
	BH17_0.5-0.6	SE177041.022	%	60 - 130%	87
	BH18_0.5-0.6	SE177041.025	%	60 - 130%	79
	BH19_0.5-0.6	SE177041.026	%	60 - 130%	90
	BH20_0.4-0.5	SE177041.027	%	60 - 130%	110
	BH21_0.4-0.5	SE177041.028	%	60 - 130%	73
Pesticides in Soil				Method: M	E-(AU)-[ENV]
rameter	Sample Name	Sample Number	Units	Criteria	Recover
fluorobiphenyl (Surrogate)	BH1M_0.2-0.3	SE177041.001	%	60 - 130%	96
nuorobiphenyi (ourrogate)	BH2_0.2-0.3	SE177041.003	%	60 - 130%	98
	BH3_0.3-0.4	SE177041.004	%	60 - 130%	94
	BH4M_0.2-0.3	SE177041.005	%	60 - 130%	92
	BH5_0.3-0.4	SE177041.006	%	60 - 130%	102
	BH6_0.2-0.3	SE177041.007	%	60 - 130%	94
	BH7M_0.2-0.3	SE177041.008	%	60 - 130%	94
	BH8_0.3-0.4	SE177041.010	%	60 - 130%	100
	BH9_0.3-0.4	SE177041.011	%	60 - 130%	96
	BH10M_0.3-0.4	SE177041.012	%	60 - 130%	98
	BH11_0.3-0.4	SE177041.014	%	60 - 130%	92
	BH12_0.5-0.6	SE177041.015	%	60 - 130%	98
	BH13M_0.3-0.4	SE177041.016	%	60 - 130%	80
	BH14_0.4-0.5	SE177041.019	%	60 - 130%	84
	BH15_0.3-0.4	SE177041.020	%	60 - 130%	100
	BH16_0.4-0.5	SE177041.021	%	60 - 130%	92
	BH17_0.5-0.6	SE177041.022	%	60 - 130%	104
	BH18_0.5-0.6	SE177041.025	%	60 - 130%	92
	BH19_0.5-0.6	SE177041.026	%	60 - 130%	94
	BH20_0.4-0.5	SE177041.020	%	60 - 130%	102
	BH21_0.4-0.5	SE177041.028	%	60 - 130%	96
(4 p tempopul (Surrogoto)					
4-p-terphenyl (Surrogate)	BH1M_0.2-0.3	SE177041.001	%	60 - 130%	94
	BH2_0.2-0.3	SE177041.003	%	60 - 130%	94
	BH3_0.3-0.4	SE177041.004	%	60 - 130%	96
	BH4M_0.2-0.3	SE177041.005	%	60 - 130%	90
	BH5_0.3-0.4	SE177041.006	%	60 - 130%	96
	BH6_0.2-0.3	SE177041.007	%	60 - 130%	98
	BH7M_0.2-0.3	SE177041.008	%	60 - 130%	94
	BH8_0.3-0.4	SE177041.010	%	60 - 130%	96
	BH9_0.3-0.4	SE177041.011	%	60 - 130%	98
	BH10M_0.3-0.4	SE177041.012	%	60 - 130%	98
	BH11_0.3-0.4	SE177041.014	%	60 - 130%	96
	BH12_0.5-0.6	SE177041.015	%	60 - 130%	104
	BH13M_0.3-0.4	SE177041.016	%	60 - 130%	78
	BH14_0.4-0.5	SE177041.019	%	60 - 130%	94
	BH15_0.3-0.4	SE177041.020	%	60 - 130%	106



Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

					(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d14-p-terphenyl (Surrogate)	BH17_0.5-0.6	SE177041.022	%	60 - 130%	98
	BH18_0.5-0.6	SE177041.025	%	60 - 130%	96
	BH19_0.5-0.6	SE177041.026	%	60 - 130%	86
	BH20_0.4-0.5	SE177041.027	%	60 - 130%	96
	BH21_0.4-0.5	SE177041.028	%	60 - 130%	86
AH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: ME-	(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1M_0.2-0.3	SE177041.001	%	70 - 130%	96
	BH1M_0.8-0.9	SE177041.002	%	70 - 130%	98
	BH2_0.2-0.3	SE177041.003	%	70 - 130%	98
	BH3_0.3-0.4	SE177041.004	%	70 - 130%	94
	BH4M_0.2-0.3	SE177041.005	%	70 - 130%	92
	BH5_0.3-0.4	SE177041.006	%	70 - 130%	102
	BH6_0.2-0.3	SE177041.007	%	70 - 130%	94
	BH7M_0.2-0.3	SE177041.008	%	70 - 130%	94
	BH7M_1.4-1.5	SE177041.009	%	70 - 130%	90
	BH8_0.3-0.4	SE177041.010	%	70 - 130%	100
	BH9_0.3-0.4	SE177041.011	%	70 - 130%	96
	BH10M_0.3-0.4	SE177041.012	%	70 - 130%	98
	BH10M_0.9-1.0	SE177041.013	%	70 - 130%	92
	BH11_0.3-0.4	SE177041.014	%	70 - 130%	92
	BH12_0.5-0.6	SE177041.015	%	70 - 130%	98
	BH13M_0.3-0.4	SE177041.016	%	70 - 130%	80
	BH13M_0.9-1.0	SE177041.017	%	70 - 130%	92
	BH13M_5.5-5.6	SE177041.018	%	70 - 130%	94
	BH14_0.4-0.5	SE177041.019	%	70 - 130%	84
	BH15_0.3-0.4	SE177041.020	%	70 - 130%	100
	BH16_0.4-0.5	SE177041.021	%	70 - 130%	92
	BH17_0.5-0.6	SE177041.022	%	70 - 130%	104
	BH17_1.0-1.1	SE177041.023	%	70 - 130%	100
	BH17_11.6	SE177041.024	%	70 - 130%	90
	BH18_0.5-0.6	SE177041.025	%	70 - 130%	92
	BH19_0.5-0.6	SE177041.026	%	70 - 130%	94
	BH20_0.4-0.5	SE177041.027	%	70 - 130%	102
	BH21_0.4-0.5	SE177041.028	%	70 - 130%	96
d14-p-terphenyl (Surrogate)	BH1M_0.2-0.3	SE177041.001	%	70 - 130%	94
	BH1M_0.8-0.9	SE177041.002	%	70 - 130%	94
	BH2_0.2-0.3	SE177041.003	%	70 - 130%	94
	BH3_0.3-0.4	SE177041.004	%	70 - 130%	96
	BH4M_0.2-0.3	SE177041.005	%	70 - 130%	90
	BH5_0.3-0.4	SE177041.006	%	70 - 130%	96
	BH6_0.2-0.3	SE177041.007	%	70 - 130%	98
	BH7M_0.2-0.3	SE177041.008	%	70 - 130%	94
	BH7M_1.4-1.5	SE177041.009	%	70 - 130%	90
	BH8_0.3-0.4	SE177041.010	%	70 - 130%	96
	BH9_0.3-0.4	SE177041.011	%	70 - 130%	98
	BH10M_0.3-0.4	SE177041.012	%	70 - 130%	98
	BH10M_0.9-1.0	SE177041.013	%	70 - 130%	96
	BH11_0.3-0.4	SE177041.014	%	70 - 130%	96
	BH12_0.5-0.6	SE177041.015	%	70 - 130%	104
	BH13M_0.3-0.4	SE177041.016	%	70 - 130%	78
	BH13M_0.9-1.0	SE177041.017	%	70 - 130%	100
	BH13M_5.5-5.6	SE177041.018	%	70 - 130%	94
	BH14_0.4-0.5	SE177041.019	%	70 - 130%	94
	BH15_0.3-0.4	SE177041.020	%	70 - 130%	106
	BH16_0.4-0.5	SE177041.021	%	70 - 130%	90
	BH17_0.5-0.6	SE177041.022	%	70 - 130%	98
	BH17_1.0-1.1	SE177041.023	%	70 - 130%	100
	BH17_11.6	SE177041.024	%	70 - 130%	86
	BH18_0.5-0.6	SE177041.025	%	70 - 130%	96



Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Recovery % Units Criteria Parameter Sample Name Sample Number d14-p-terphenyl (Surrogate) BH19 0.5-0.6 SE177041.026 % 70 - 130% 86 BH20_0.4-0.5 SE177041.027 70 - 130% 96 % BH21 0.4-0.5 SE177041.028 % 70 - 130% 86 d5-nitrobenzene (Surrogate) BH1M_0.2-0.3 SE177041.001 70 - 130% 92 % BH1M_0.8-0.9 SE177041.002 70 - 130% 90 % BH2 0.2-0.3 SE177041.003 % 70 - 130% 94 BH3 0.3-0.4 SE177041.004 % 70 - 130% 94 BH4M_0.2-0.3 SE177041.005 % 70 - 130% 92 BH5 0.3-0.4 SE177041.006 % 70 - 130% 96 BH6 0.2-0.3 SE177041.007 70 - 130% 96 % BH7M_0.2-0.3 SE177041.008 % 70 - 130% 92 BH7M 1.4-1.5 SE177041.009 % 70 - 130% 88 BH8 0.3-0.4 SE177041.010 % 70 - 130% 96 BH9_0.3-0.4 SE177041.011 % 70 - 130% 92 BH10M 0.3-0.4 SE177041.012 % 70 - 130% 96 BH10M_0.9-1.0 SE177041.013 % 70 - 130% 98 BH11_0.3-0.4 SE177041.014 % 70 - 130% 96 BH12 0.5-0.6 SE177041.015 % 70 - 130% 100 BH13M 0.3-0.4 SE177041.016 % 70 - 130% 74 BH13M_0.9-1.0 SE177041.017 70 - 130% 96 % BH13M 5.5-5.6 SE177041.018 % 70 - 130% 94 BH14_0.4-0.5 SE177041.019 70 - 130% 84 % BH15_0.3-0.4 SE177041.020 % 70 - 130% 100 BH16 0.4-0.5 SE177041.021 % 70 - 130% 86 BH17 0 5-0 6 SE177041 022 % 70 - 130% 90 BH17_1.0-1.1 SE177041.023 % 70 - 130% 102 BH17_1.-1.6 SE177041.024 % 70 - 130% 82 BH18 0.5-0.6 SE177041.025 % 70 - 130% 88 BH19_0.5-0.6 SE177041.026 % 70 - 130% 82 BH20 0.4-0.5 SE177041.027 70 - 130% 100 % BH21_0.4-0.5 SE177041.028 % 70 - 130% 82 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Parameter Sample Name Sample Numl Units Criteria Recovery % Tetrachloro-m-xylene (TCMX) (Surrogate) BH1M 0.2-0.3 SE177041.001 % 60 - 130% 111 BH1M_0.8-0.9 SE177041.002 % 60 - 130% 111 BH2_0.2-0.3 SE177041.003 60 - 130% 113 % BH3 0.3-0.4 SE177041.004 % 60 - 130% 107 BH4M_0.2-0.3 SE177041.005 % 60 - 130% 113 BH5_0.3-0.4 SE177041.006 % 60 - 130% 115 BH6 0.2-0.3 SE177041.007 % 60 - 130% 111 BH7M_0.2-0.3 SE177041.008 60 - 130% 117 % BH8_0.3-0.4 110 SE177041.010 60 - 130% % BH9 0.3-0.4 SE177041.011 % 60 - 130% 115 BH10M_0.3-0.4 SE177041.012 60 - 130% 113 % BH11_0.3-0.4 SE177041.014 60 - 130% 115 % BH12 0.5-0.6 60 - 130% SE177041.015 % 85 BH13M_0.3-0.4 SE177041.016 % 60 - 130% 93 BH14_0.4-0.5 SE177041.019 % 60 - 130% 93 BH15 0.3-0.4 SE177041.020 % 60 - 130% 86 BH16_0.4-0.5 SE177041.021 % 60 - 130% 82 BH17_0.5-0.6 SE177041.022 % 60 - 130% 87 BH18 0.5-0.6 SE177041.025 % 60 - 130% 79 BH19_0.5-0.6 SE177041.026 % 60 - 130% 90 BH20_0.4-0.5 SE177041.027 % 60 - 130% 110 BH21 0.4-0.5 SE177041.028 % 60 - 130% 73 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Parameter Sample Name Sample Numb Criteria Recovery % BH1M_0.2-0.3 Bromofluorobenzene (Surrogate) SE177041.001 % 60 - 130% 79 BH1M 0.8-0.9 SE177041.002 % 60 - 130% 71 BH2_0.2-0.3 SE177041.003 60 - 130% % 83



Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

					E-(AU)-[ENV]A
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	BH3_0.3-0.4	SE177041.004	%	60 - 130%	86
	BH4M_0.2-0.3	SE177041.005	%	60 - 130%	72
	BH5_0.3-0.4	SE177041.006	%	60 - 130%	75
	BH6_0.2-0.3	SE177041.007	%	60 - 130%	87
	BH7M_0.2-0.3	SE177041.008	%	60 - 130%	75
	BH7M_1.4-1.5	SE177041.009	%	60 - 130%	94
	BH8_0.3-0.4	SE177041.010	%	60 - 130%	94
	BH9_0.3-0.4	SE177041.011	%	60 - 130%	91
	BH10M_0.3-0.4	SE177041.012	%	60 - 130%	74
	BH10M_0.9-1.0	SE177041.013	%	60 - 130%	78
	BH11_0.3-0.4	SE177041.014	%	60 - 130%	84
				60 - 130%	
	BH12_0.5-0.6	SE177041.015	%		86
	BH13M_0.3-0.4	SE177041.016	%	60 - 130%	85
	BH13M_0.9-1.0	SE177041.017	%	60 - 130%	72
	BH13M_5.5-5.6	SE177041.018	%	60 - 130%	92
	BH14_0.4-0.5	SE177041.019	%	60 - 130%	71
	BH15_0.3-0.4	SE177041.020	%	60 - 130%	80
	BH16_0.4-0.5	SE177041.021	%	60 - 130%	85
	BH17_0.5-0.6	SE177041.022	%	60 - 130%	83
	BH17_1.0-1.1	SE177041.023	%	60 - 130%	88
	BH17_11.6	SE177041.024	%	60 - 130%	80
	BH18_0.5-0.6	SE177041.025	%	60 - 130%	92
	BH19_0.5-0.6	SE177041.026	%	60 - 130%	86
	BH20_0.4-0.5	SE177041.027	%	60 - 130%	86
	BH21 0.4-0.5	SE177041.028	%	60 - 130%	86
	QD1	SE177041.029	%	60 - 130%	88
	QTS	SE177041.031	%	60 - 130%	100
	QTB				
		SE177041.032	%	60 - 130%	86
-1,2-dichloroethane (Surrogate)	BH1M_0.2-0.3	SE177041.001	%	60 - 130%	88
	BH1M_0.8-0.9	SE177041.002	%	60 - 130%	102
	BH2_0.2-0.3	SE177041.003	%	60 - 130%	92
	BH3_0.3-0.4	SE177041.004	%	60 - 130%	78
	BH4M_0.2-0.3	SE177041.005	%	60 - 130%	83
	BH5_0.3-0.4	SE177041.006	%	60 - 130%	91
	BH6_0.2-0.3	SE177041.007	%	60 - 130%	91
	BH7M_0.2-0.3	SE177041.008	%	60 - 130%	81
	BH7M_1.4-1.5	SE177041.009	%	60 - 130%	86
	BH8_0.3-0.4	SE177041.010	%	60 - 130%	89
	BH9 0.3-0.4	SE177041.011	%	60 - 130%	87
	BH10M 0.3-0.4	SE177041.012	%	60 - 130%	78
	BH10M_0.9-1.0	SE177041.013	%	60 - 130%	71
	BH11_0.3-0.4	SE177041.014	%	60 - 130%	83
	BH12_0.5-0.6	SE177041.015	%	60 - 130%	91
			%	60 - 130%	
	BH13M_0.3-0.4	SE177041.016			82
	BH13M_0.9-1.0	SE177041.017	%	60 - 130%	82
	BH13M_5.5-5.6	SE177041.018	%	60 - 130%	82
	BH14_0.4-0.5	SE177041.019	%	60 - 130%	72
	BH15_0.3-0.4	SE177041.020	%	60 - 130%	75
	BH16_0.4-0.5	SE177041.021	%	60 - 130%	85
	D1147 0 5 0 6	SE177041.022	%	60 - 130%	79
	BH17_0.5-0.6				
	BH17_1.0-1.1	SE177041.023	%	60 - 130%	97
		SE177041.023 SE177041.024	%	60 - 130% 60 - 130%	97 86
	BH17_1.0-1.1				
	BH17_1.0-1.1 BH17_11.6	SE177041.024	%	60 - 130%	86
	BH17_1.0-1.1 BH17_11.6 BH18_0.5-0.6 BH19_0.5-0.6	SE177041.024 SE177041.025 SE177041.026	% %	60 - 130% 60 - 130%	86 91 84
	BH17_1.0-1.1 BH17_11.6 BH18_0.5-0.6 BH19_0.5-0.6 BH20_0.4-0.5	SE177041.024 SE177041.025 SE177041.026 SE177041.027	% % %	60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 91 84 91
	BH17_1.0-1.1 BH17_11.6 BH18_0.5-0.6 BH19_0.5-0.6 BH20_0.4-0.5 BH21_0.4-0.5	SE177041.024 SE177041.025 SE177041.026 SE177041.027 SE177041.028	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 91 84 91 78
	BH17_1.0-1.1 BH17_11.6 BH18_0.5-0.6 BH19_0.5-0.6 BH20_0.4-0.5 BH21_0.4-0.5 QD1	SE177041.024 SE177041.025 SE177041.026 SE177041.027 SE177041.028 SE177041.029	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 91 84 91 78 100
	BH17_1.0-1.1 BH17_11.6 BH18_0.5-0.6 BH19_0.5-0.6 BH20_0.4-0.5 BH21_0.4-0.5 QD1 QTS	SE177041.024 SE177041.025 SE177041.026 SE177041.027 SE177041.028 SE177041.029 SE177041.031	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 91 84 91 78 100 102
3-toluene (Surrogate)	BH17_1.0-1.1 BH17_11.6 BH18_0.5-0.6 BH19_0.5-0.6 BH20_0.4-0.5 BH21_0.4-0.5 QD1	SE177041.024 SE177041.025 SE177041.026 SE177041.027 SE177041.028 SE177041.029	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 91 84 91 78 100



Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

					E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH2_0.2-0.3	SE177041.003	%	60 - 130%	81
	BH3_0.3-0.4	SE177041.004	%	60 - 130%	75
	BH4M_0.2-0.3	SE177041.005	%	60 - 130%	76
	BH5_0.3-0.4	SE177041.006	%	60 - 130%	81
	BH6_0.2-0.3	SE177041.007	%	60 - 130%	84
	BH7M_0.2-0.3	SE177041.008	%	60 - 130%	72
	BH7M_1.4-1.5	SE177041.009	%	60 - 130%	71
	BH8_0.3-0.4	SE177041.010	%	60 - 130%	86
	BH9_0.3-0.4	SE177041.011	%	60 - 130%	70
	BH10M_0.3-0.4	SE177041.012	%	60 - 130%	72
	BH10M_0.9-1.0	SE177041.013	%	60 - 130%	70
	BH11_0.3-0.4	SE177041.014	%	60 - 130%	76
	BH12_0.5-0.6	SE177041.015	%	60 - 130%	75
	BH13M_0.3-0.4	SE177041.016	%	60 - 130%	75
	BH13M_0.9-1.0	SE177041.017	%	60 - 130%	73
	BH13M_5.5-5.6	SE177041.018	%	60 - 130%	86
	BH14_0.4-0.5	SE177041.019	%	60 - 130%	75
	BH15_0.3-0.4	SE177041.020	%	60 - 130%	79
	BH16_0.4-0.5	SE177041.021	%	60 - 130%	77
	BH17_0.5-0.6	SE177041.022	%	60 - 130%	71
	BH17_1.0-1.1	SE177041.023	%	60 - 130%	86
	BH17_11.6	SE177041.024	%	60 - 130%	78
	BH18_0.5-0.6	SE177041.025	%	60 - 130%	82
	BH19_0.5-0.6	SE177041.026	%	60 - 130%	78
	BH20_0.4-0.5	SE177041.027	%	60 - 130%	80
	BH21_0.4-0.5	SE177041.028	%	60 - 130%	71
	QD1	SE177041.029	%	60 - 130%	103
	QTS	SE177041.031	%	60 - 130%	95
	QTB	SE177041.032	%	60 - 130%	85
Dibromofluoromethane (Surrogate)	BH1M_0.2-0.3	SE177041.001	%	60 - 130%	97
	BH1M_0.8-0.9	SE177041.002	%	60 - 130%	95
	BH2_0.2-0.3	SE177041.003	%	60 - 130%	109
	BH3_0.3-0.4	SE177041.004	%	60 - 130%	127
	BH4M_0.2-0.3	SE177041.005	%	60 - 130%	82
	BH5_0.3-0.4	SE177041.006	%	60 - 130%	95
	BH6_0.2-0.3	SE177041.007	%	60 - 130%	117
	BH7M_0.2-0.3	SE177041.008	%	60 - 130%	86
	BH7M_1.4-1.5	SE177041.009	%	60 - 130%	105
	BH8_0.3-0.4	SE177041.010	%	60 - 130%	99
	BH9_0.3-0.4	SE177041.011	%	60 - 130%	102
	BH10M_0.3-0.4	SE177041.012	%	60 - 130%	121
	BH10M_0.9-1.0	SE177041.013	%	60 - 130%	108
	BH11_0.3-0.4	SE177041.014	%	60 - 130%	94
	BH12_0.5-0.6	SE177041.015	%	60 - 130%	108
	BH13M_0.3-0.4	SE177041.016	%	60 - 130%	107
	BH13M_0.9-1.0	SE177041.017	%	60 - 130%	109
	BH13M_5.5-5.6	SE177041.018	%	60 - 130%	116
	BH14_0.4-0.5	SE177041.019	%	60 - 130%	105
	BH15_0.3-0.4	SE177041.020	%	60 - 130%	99
	BH16_0.4-0.5	SE177041.021	%	60 - 130%	75
	BH17_0.5-0.6	SE177041.022	%	60 - 130%	71
	BH17_1.0-1.1	SE177041.023	%	60 - 130%	78
	BH17_11.6	SE177041.024	%	60 - 130%	74
	BH18_0.5-0.6	SE177041.025	%	60 - 130%	79
	BH19_0.5-0.6	SE177041.026	%	60 - 130%	70
	BH20_0.4-0.5	SE177041.027	%	60 - 130%	73
	BH21_0.4-0.5	SE177041.028	%	60 - 130%	70
	QD1	SE177041.029	%	60 - 130%	82
	QTS	SE177041.031	%	60 - 130%	99
	QTB	SE177041.032	%	60 - 130%	80



Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

OCs in Water				Method: ME	(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE177041.030	%	40 - 130%	104
d4-1,2-dichloroethane (Surrogate)	QR1	SE177041.030	%	40 - 130%	101
d8-toluene (Surrogate)	QR1	SE177041.030	%	40 - 130%	101
Dibromofluoromethane (Surrogate)	QR1	SE177041.030	%	40 - 130%	100
/olatile Petroleum Hydrocarbons in Soil				Method: ME	(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M_0.2-0.3	SE177041.001	%	60 - 130%	79
Biomonuolobenzene (Sunogate)	BH1M_0.8-0.9	SE177041.002		60 - 130%	75
			%	60 - 130%	
	BH2_0.2-0.3 BH3_0.3-0.4	SE177041.003 SE177041.004	%	60 - 130%	83 86
	BH4M_0.2-0.3	SE177041.005	%	60 - 130%	72
	BH4M_0.2-0.3 BH5_0.3-0.4	SE177041.005	%	60 - 130%	75
	BH5_0.2-0.3 BH6_0.2-0.3	SE177041.007	%	60 - 130%	87
	BH7M_0.2-0.3	SE177041.008	%	60 - 130%	75
	BH7M_1.4-1.5	SE177041.009	%	60 - 130%	94
	BH7M_1.4-1.3 BH8_0.3-0.4	SE177041.003	%	60 - 130%	94
	ВН9_0.3-0.4	SE177041.010	%	60 - 130%	94
	BH10M_0.3-0.4	SE177041.011	%	60 - 130%	74
	BH10M_0.9-1.0	SE177041.012	%	60 - 130%	74
	BH10M_0.3-1.0	SE177041.013	%	60 - 130%	84
	BH12_0.5-0.6	SE177041.014	%	60 - 130%	86
	BH12_0.0-0.0 BH13M_0.3-0.4	SE177041.015	%	60 - 130%	85
	BH13M_0.9-1.0	SE177041.017	%	60 - 130%	72
	BH13M 5.5-5.6	SE177041.018	%	60 - 130%	92
	BH14_0.4-0.5	SE177041.019	%	60 - 130%	71
	BH15_0.3-0.4	SE177041.020	%	60 - 130%	80
	BH16_0.4-0.5	SE177041.020	%	60 - 130%	85
	BH17_0.5-0.6	SE177041.022	%	60 - 130%	83
	BH17_1.0-1.1	SE177041.023	%	60 - 130%	88
	BH17_11.6	SE177041.024	%	60 - 130%	80
	BH18_0.5-0.6	SE177041.025	%	60 - 130%	92
	BH19_0.5-0.6	SE177041.026	%	60 - 130%	86
	BH20_0.4-0.5	SE177041.027	%	60 - 130%	86
	BH21_0.4-0.5	SE177041.028	%	60 - 130%	86
	QD1	SE177041.029	%	60 - 130%	88
d4-1,2-dichloroethane (Surrogate)	BH1M_0.2-0.3	SE177041.001	%	60 - 130%	88
	 BH1M_0.8-0.9	SE177041.002	%	60 - 130%	102
	BH2_0.2-0.3	SE177041.003	%	60 - 130%	92
	BH3_0.3-0.4	SE177041.004	%	60 - 130%	78
	BH4M_0.2-0.3	SE177041.005	%	60 - 130%	83
	BH5_0.3-0.4	SE177041.006	%	60 - 130%	91
	BH6_0.2-0.3	SE177041.007	%	60 - 130%	91
	BH7M_0.2-0.3	SE177041.008	%	60 - 130%	81
	BH7M_1.4-1.5	SE177041.009	%	60 - 130%	86
	BH8_0.3-0.4	SE177041.010	%	60 - 130%	89
	BH9_0.3-0.4	SE177041.011	%	60 - 130%	87
	BH10M_0.3-0.4	SE177041.012	%	60 - 130%	78
	BH10M_0.9-1.0	SE177041.013	%	60 - 130%	71
	BH11_0.3-0.4	SE177041.014	%	60 - 130%	83
	BH12_0.5-0.6	SE177041.015	%	60 - 130%	91
	BH13M_0.3-0.4	SE177041.016	%	60 - 130%	82
	BH13M_0.9-1.0	SE177041.017	%	60 - 130%	82
	BH13M_5.5-5.6	SE177041.018	%	60 - 130%	82
	BH14_0.4-0.5	SE177041.019	%	60 - 130%	72
	BH15_0.3-0.4	SE177041.020	%	60 - 130%	75
	BH16_0.4-0.5	SE177041.021	%	60 - 130%	85
	BH17_0.5-0.6	SE177041.022	%	60 - 130%	79
	BH17_1.0-1.1	SE177041.023	%	60 - 130%	97
	BH17_11.6	SE177041.024	%	60 - 130%	86
	BH18_0.5-0.6	SE177041.025	%	60 - 130%	91



Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Volatile Petroleum Hydrocarbons in Soil (continued)

#### Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d4-1,2-dichloroethane (Surrogate)	BH19_0.5-0.6	SE177041.026	%	60 - 130%	84
	BH20_0.4-0.5	SE177041.027	%	60 - 130%	91
	BH21_0.4-0.5	SE177041.028	%	60 - 130%	78
	QD1	SE177041.029	%	60 - 130%	100
d8-toluene (Surrogate)	BH1M_0.2-0.3	SE177041.001	%	60 - 130%	77
	BH1M 0.8-0.9	SE177041.002	%	60 - 130%	74
	BH2_0.2-0.3	SE177041.003	%	60 - 130%	81
	BH3_0.3-0.4	SE177041.004	%	60 - 130%	75
	BH4M_0.2-0.3	SE177041.005	%	60 - 130%	76
	BH5_0.3-0.4	SE177041.006	%	60 - 130%	81
	BH6_0.2-0.3	SE177041.007	%	60 - 130%	84
	BH7M_0.2-0.3	SE177041.008	%	60 - 130%	72
	BH7M_1.4-1.5	SE177041.009	%	60 - 130%	71
	BH8_0.3-0.4	SE177041.010	%	60 - 130%	86
	BH9_0.3-0.4	SE177041.011	%	60 - 130%	70
	BH10M_0.3-0.4	SE177041.012	%	60 - 130%	72
	BH10M_0.9-1.0	SE177041.013	%	60 - 130%	70
	BH11_0.3-0.4	SE177041.014	%	60 - 130%	76
	BH12_0.5-0.6	SE177041.015	%	60 - 130%	75
	BH13M_0.3-0.4	SE177041.016	%	60 - 130%	75
	BH13M_0.9-1.0	SE177041.017	%	60 - 130%	73
	BH13M_5.5-5.6	SE177041.018	%	60 - 130%	86
	BH14_0.4-0.5	SE177041.019	%	60 - 130%	75
	BH15_0.3-0.4	SE177041.020	%	60 - 130%	79
	BH16_0.4-0.5	SE177041.021	%	60 - 130%	77
	BH17_0.5-0.6	SE177041.022	%	60 - 130%	71
	BH17_1.0-1.1	SE177041.023	%	60 - 130%	86
	BH17_11.6	SE177041.024	%	60 - 130%	78
	BH18_0.5-0.6	SE177041.025	%	60 - 130%	82
	BH19_0.5-0.6	SE177041.026	%	60 - 130%	78
	BH20_0.4-0.5	SE177041.027	%	60 - 130%	80
	BH21_0.4-0.5	SE177041.028	%	60 - 130%	71
	QD1	SE177041.029	%	60 - 130%	103
Dibromofluoromethane (Surrogate)	BH1M_0.2-0.3	SE177041.001	%	60 - 130%	97
	BH1M_0.8-0.9	SE177041.002	%	60 - 130%	95
	BH2_0.2-0.3	SE177041.003	%	60 - 130%	109
	BH3_0.3-0.4	SE177041.004	%	60 - 130%	127
	BH4M_0.2-0.3	SE177041.005	%	60 - 130%	82
	BH5_0.3-0.4	SE177041.006	%	60 - 130%	95
	BH6_0.2-0.3	SE177041.007	%	60 - 130%	117
	BH7M_0.2-0.3	SE177041.008	%	60 - 130%	86
	BH7M_1.4-1.5	SE177041.009	%	60 - 130%	105
	BH8_0.3-0.4	SE177041.010	%	60 - 130%	99
	BH9_0.3-0.4	SE177041.011	%	60 - 130%	102
	BH10M_0.3-0.4	SE177041.012	%	60 - 130%	121
	BH10M_0.9-1.0	SE177041.013	%	60 - 130%	108
	BH11_0.3-0.4	SE177041.014	%	60 - 130%	94
	BH12_0.5-0.6	SE177041.015	%	60 - 130%	108
	BH13M_0.3-0.4	SE177041.016	%	60 - 130%	107
	BH13M_0.9-1.0	SE177041.017	%	60 - 130%	109
	BH13M_5.5-5.6	SE177041.018	%	60 - 130%	116
	BH14_0.4-0.5	SE177041.019	%	60 - 130%	105
	BH15_0.3-0.4	SE177041.020	%	60 - 130%	99
	BH16_0.4-0.5	SE177041.021	%	60 - 130%	75
	BH17_0.5-0.6	SE177041.022	%	60 - 130%	71
	BH17_1.0-1.1	SE177041.023	%	60 - 130%	78
	BH17_11.6	SE177041.024	%	60 - 130%	74
	BH18_0.5-0.6	SE177041.025	%	60 - 130%	79
	BH19_0.5-0.6	SE177041.026	%	60 - 130%	70
	BH20_0.4-0.5	SE177041.027	%	60 - 130%	73
	BH21_0.4-0.5	SE177041.028	%	60 - 130%	70



Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Volatile Petroleum Hydrocarbons in Soil (continued)				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	QD1	SE177041.029	%	60 - 130%	82
Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[EN					
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE177041.030	%	40 - 130%	104
d4-1,2-dichloroethane (Surrogate)	QR1	SE177041.030	%	60 - 130%	101
d8-toluene (Surrogate)	QR1	SE177041.030	%	40 - 130%	101
Dibromofluoromethane (Surrogate)	QR1	SE177041.030	%	40 - 130%	100



Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[E	ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB144361.001	Mercury	mg/L	0.0001	<0.0001

#### Mercury in Soil

Mercury in Soil			Μ	lethod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB144375.001	Mercury	mg/kg	0.05	<0.05
LB144380.001	Mercury	mg/kg	0.05	<0.05

#### **OC Pesticides in Soil**

C Pesticides in Soil	Development	11		od: ME-(AU)-[EN\
ample Number	Parameter	Units	LOR	Result
3144195.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	105
144196.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane		0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	p,p-uue Dieldrin	mg/kg	0.1	<0.1
	Endrin	mg/kg	0.2	<0.2
		mg/kg		<0.2
	Beta Endosulfan	mg/kg	0.2	
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	94



Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### OP Pesticides in Soil

OP Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
B144195.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	102
		d14-p-terphenyl (Surrogate)	%	-	98
LB144196.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	96
		d14-p-terphenyl (Surrogate)	%	-	96
AH (Polynuclear Aro	matic Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN
ample Number		Parameter	Units	LOR	Result
3144195.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		· · · ·			

		Benzo(a)anthracene	mg/kg
		Chrysene	mg/kg
		Benzo(a)pyrene	mg/kg
		Indeno(1,2,3-cd)pyrene	mg/kg
		Dibenzo(ah)anthracene	mg/kg
		Benzo(ghi)perylene	mg/kg
		Total PAH (18)	mg/kg
	Surrogates	d5-nitrobenzene (Surrogate)	%
		2-fluorobiphenyl (Surrogate)	%
		d14-p-terphenyl (Surrogate)	%
LB144196.001		Naphthalene	mg/kg
		2-methylnaphthalene	mg/kg
		1-methylnaphthalene	mg/kg
		Acenaphthylene	mg/kg
		Acenaphthene	mg/kg
		Fluorene	mg/kg
		Phenanthrene	mg/kg
		Anthracene	mg/kg
		Fluoranthene	mg/kg
		Pyrene	mg/kg
		Benzo(a)anthracene	mg/kg
		Chrysene	mg/kg

0.1

0.1

0.1

0.1

0.1

0.1

0.8

-

-

0.1

0.1

0.1

0.1

0.1

0.1

0.1 0.1

0.1

0.1

0.1

0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.8 98

102

98

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1 <0.1

<0.1

<0.1

<0.1

<0.1

<0.1



# SE177041 R0

Method: ME_(ALI)_JENV/JAN420

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAIr (Folyhudear Alomate Trythocarbons) in Soir (Continued)			Moun	
Sample Number	Parameter	Units	LOR	Result
LB144196.001	Benzo(a)pyrene	mg/kg	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
	Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
	Benzo(ghi)perylene	mg/kg	0.1	<0.1
	Total PAH (18)	mg/kg	0.8	<0.8
Surrogates	d5-nitrobenzene (Surrogate)	%	-	100
	2-fluorobiphenyl (Surrogate)	%	-	96
	d14-p-terphenyl (Surrogate)	%	-	96

#### PCBs in Soil

PCBs in Soil				Meth	od: ME-(AU)-[ENV
Sample Number		Parameter	Units	LOR	Result
LB144195.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	105
B144196.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	94

#### Method: ME-(AU)-[ENV]AN040/AN320 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Sample Number LOR Parameter Units Result LB144414.001 Arsenic, As mg/kg 3 <3 Cadmium, Cd mg/kg 0.3 < 0.3 Chromium, Cr 0.3 <0.3 mg/kg Copper, Cu 0.5 <0.5 mg/kg Nickel, Ni mg/kg 0.5 < 0.5 Lead, Pb <1 mg/kg 1 Zinc, Zn mg/kg 0.5 <0.5 LB144415.001 Arsenic, As mg/kg 3 <3 Cadmium, Cd 0.3 <0.3 mg/kg 0.3 <0.3 Chromium, Cr mg/kg Copper, Cu mg/kg 0.5 < 0.5 Nickel, Ni 0.5 <0.5 mg/kg Lead, Pb <1 mg/kg 1 Zinc, Zn mg/kg 0.5 <0.5 Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number Result Parameter Units LOR LB144357.001 Arsenic, As µg/L 1 <1 Cadmium, Cd µg/L 0.1 <0.1 Chromium, Cr <1 µg/L 1

TRH (Total Recoverable Hydrocarbons) ir	Soil		Meth	od: ME-(AU)-[ENV]AN403
	Zinc, Zn	μg/L	5	<5
	Nickel, Ni	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
		10		

Parameter

Sample Number



# SE177041 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recoverab	ole Hydrocarbons) in Soil (conti	nued)		Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB144195.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
LB144196.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
"PH (Total Basswarph	ble Hydrocarbons) in Water		inging		od: ME-(AU)-[ENV]AN
		Deromotor	Unito		
Sample Number		Parameter	Units	LOR	Result
LB144250.001		TRH C10-C14	μg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C29-C36	μg/L	200	<200
		TRH C37-C40	μg/L	200	<200
/OC's in Soil				Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB144209.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	_	72
	Gunogates	d4-1,2-dichloroethane (Surrogate)	%	_	100
			%		86
		d8-toluene (Surrogate)			
		Bromofluorobenzene (Surrogate)	%	-	71
	Totals	Total BTEX	mg/kg	0.6	<0.6
LB144210.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	75
		d4-1,2-dichloroethane (Surrogate)	%	-	86
		d8-toluene (Surrogate)	%	-	83
		Bromofluorobenzene (Surrogate)	%	-	91
	Totals	Total BTEX	mg/kg	0.6	<0.6
/OCs in Water				Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B144312.001	Monocyclic Aromatic	Benzene	µg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
	nyarooarbons	Ethylbenzene		0.5	<0.5
		m/p-xylene	μg/L	1	<1
			μg/L		
	Delvevelie VOO-	o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	109
		d4-1,2-dichloroethane (Surrogate)	%	-	100
		d8-toluene (Surrogate)	%	-	98
		Bromofluorobenzene (Surrogate)	%	-	103
olatile Petroleum Hyd	drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
		TRH C6-C9	mg/kg	20	<20
LB144209.001					
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	72
	Surrogates			-	
	Surrogates	Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	<u>%</u> %		72 100 86



# SE177041 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### Volatile Petroleum Hydrocarbons in Soil (continued)

#### Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB144210.001	Surrogates	Dibromofluoromethane (Surrogate)	%	-	75
		d4-1,2-dichloroethane (Surrogate)	%	-	86
		d8-toluene (Surrogate)	%	-	83
Volatile Petroleum Hyd	drocarbons in Water			Metho	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB144312.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	109
		d4-1,2-dichloroethane (Surrogate)	%	-	100
		d8-toluene (Surrogate)	%	-	98
		Bromofluorobenzene (Surrogate)	%	-	103



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Mercury (dissolved)	in Water				Metho	d: ME-(AU)-[I	ENVJAN311(P	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE177082.002	LB144361.014	Mercury	µg/L	0.0001	-0.0268	-0.0244	200	0
SE177109.009	LB144361.024	Mercury	μg/L	0.0001	-0.0274	-0.0186	200	0

Mercury in Soil						Meth	od: ME-(AU)-	ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE177010.001	LB144380.024	Mercury	mg/kg	0.05	0.05	<0.05	131	7
SE177041.010	LB144375.014	Mercury	mg/kg	0.05	<0.05	0.05	142	8
SE177041.019	LB144375.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE177041.029	LB144380.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
Moisture Content						Meth	od: ME-(AU)-	ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE177041.004	LB144307.011	% Moisture	%w/w	0.5	5.5	5.5	48	1
SE177041.014	LB144307.022	% Moisture	%w/w	0.5	13	8.9	39	39
SE177041.024	LB144307.033	% Moisture	%w/w	0.5	16	17	36	3
SE177118.003	LB144307.043	% Moisture	%w/w	0.5	12	12	38	1

02111110.000	EBTTTOOTTOTTO			,					
OC Pesticides in S	oil						Meth	nod: ME-(AU)-	ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE177041.004	LB144195.014		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.16	30	0
SE177041.011	LB144195.026		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

OC Pesticides in S	Soil (continued)						Meth	od: ME-(AU)-	[ENV]AN4:
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE177041.011	LB144195.026		p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.2	0	200	0
					0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg			0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2			
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.168	30	2
SE177041.022	LB144196.022	-	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor		0.1	<0.1	0	200	0
				mg/kg					
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
					0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg					
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.143	30	10
D Destisides in 0	a ll						Mad		
OP Pesticides in S								od: ME-(AU)-	1⊏NVJAN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE177041.004	LB144195.014		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion) Total OP Pesticides*	mg/kg	0.2	<0.2 <1.7	<0.2 <1.7	200 200	0



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

P Pesticides in S	Soil (continued)						Meth	od: ME-(AU)-	ENVIAN
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
SE177041.004	LB144195.014	Surrogates	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	6
SE177041.011	LB144195.027		Dichlorvos	mg/kg	0.5	<0.5	0	200	0
			Dimethoate	mg/kg	0.5	<0.5	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0	200	0
			Fenitrothion	mg/kg	0.2	<0.2	0	200	0
			Malathion	mg/kg	0.2	<0.2	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0.01	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0.01	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0	200	0
			Methidathion	mg/kg	0.5	<0.5	0	200	0
			Ethion	mg/kg	0.2	<0.2	0.03	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	0	200	0
		Currenetee			-				4
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg		0.5	0.5	30	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
E177041.022	LB144196.022		Dichlorvos	mg/kg	0.5	<0.5	0	200	0
			Dimethoate	mg/kg	0.5	<0.5	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0.01	200	0
			Fenitrothion	mg/kg	0.2	<0.2	0	200	0
			Malathion	mg/kg	0.2	<0.2	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0.01	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0.01	200	0
			Methidathion	mg/kg	0.5	<0.5	0	200	0
			Ethion	mg/kg	0.2	<0.2	0.04	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	ma/ka	-	0.5		30	14
AH (Polynuclear	Aromatic Hydrocarbo	Surrogates	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg	-	0.5 0.5	0.45 0.45	30 30 nod: ME-(AU)-	9
Driginal	Duplicate		d14-p-terphenyl (Surrogate) Parameter	mg/kg Units	LOR	0.5 Original	0.45 0.45 Meth Duplicate	30 nod: ME-(AU)- Criteria %	RPD
original	-		d14-p-terphenyl (Surrogate) Parameter Naphthalene	mg/kg Units mg/kg	_ LOR 0.1	0.5 Original 0.1	0.45 0.45 Meth Duplicate 0.1	30 nod: ME-(AU)- Criteria % 117	9 <mark>{ENV]A</mark> RPD 9
· · ·	Duplicate		d14-p-terphenyl (Surrogate) Parameter	mg/kg Units	LOR 0.1 0.1	0.5 Original 0.1 0.2	0.45 0.45 Meth Duplicate	30 nod: ME-(AU)- Criteria % 117 84	9 <b>[ENV]A</b> RPC 9 5
original	Duplicate		d14-p-terphenyl (Surrogate) Parameter Naphthalene	mg/kg Units mg/kg	_ LOR 0.1	0.5 Original 0.1	0.45 0.45 Meth Duplicate 0.1	30 nod: ME-(AU)- Criteria % 117	9 [ENV]/ RPC 9 5 6
riginal	Duplicate		d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene	mg/kg Units mg/kg mg/kg	LOR 0.1 0.1	0.5 Original 0.1 0.2	0.45 0.45 Meth Duplicate 0.1 0.2	30 nod: ME-(AU)- Criteria % 117 84	9 [ENV]/ RPI 9 5 6
riginal	Duplicate		d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene	mg/kg Units mg/kg mg/kg mg/kg	- 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2	0.45 0.45 Meth Duplicate 0.1 0.2 0.2	30 nod: ME-(AU)- Criteria % 117 84 95	9 <b>{ENV]/</b> RPI 9 5 6 6 0
riginal	Duplicate		d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene	mg/kg Units mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1	0.45 0.45 Meth Duplicate 0.1 0.2 0.2 <0.1	30 nod: ME-(AU)- Criteria % 117 84 95 155	9 {ENV]/ RPE 9 5 6 0 0 0
riginal	Duplicate		d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene	mg/kg Units mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1	0.45 0.45 Meth 0.1 0.2 0.2 <0.1 <0.1	30 100: ME-(AU)- Criteria % 117 84 95 155 200	9 {ENV]/ RPE 9 5 6 6 0 0 0 0 0 0 0 0
riginal	Duplicate		d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1	30 Criteria % 117 84 95 155 200 200	9 [ENV]/ RPI 9 5 6 0 0 0 0 0 0 1 1
riginal	Duplicate		d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.4	30 Criteria % 117 84 95 155 200 200 52	9 [ENV]4 RPE 9 55 66 00 00 00 13 10
riginal	Duplicate		d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 0.5 0.1 1.0	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 0.4 <0.1	30 criteria % 117 84 95 155 200 200 52 130	9 [ENV]/ RPE 9 5 6 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
riginal	Duplicate		d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Fluoranthene Fluoranthene Pyrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.4 <0.1 0.8 0.9	30 And: ME-(AU)- Criteria % 117 84 95 155 200 200 52 130 41 40	9 [ENV]A RPI 9 5 6 0 0 0 0 0 1 1 1 1 1 2 2
riginal	Duplicate		d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.4 <0.1 0.8 0.9 0.5	30 Add: ME-(AU)- Criteria % 117 84 95 155 200 200 52 130 41 40 50	9 [ENV]A RPE 9 5 6 0 0 0 0 10 10 10 10 10 10 10
riginal	Duplicate		d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.4 <0.1 0.8 0.9 0.5 0.4	30 Add: ME-(AU)- Criteria % 117 84 95 155 200 200 52 130 41 40 50 51	9 [ENV]4 RPI 9 5 6 0 0 0 0 0 1 1 1 1 1 1 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
riginal	Duplicate		d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(b&j)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.8 0.9 0.5 0.4 0.6	30 nod: ME-(AU)- Criteria % 117 84 95 200 200 52 130 41 40 50 51 45	9 [ENV]/ RPI 9 5 6 0 0 0 11 11 11 11 11 11 11 1
riginal	Duplicate		d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(b&j)fluoranthene         Benzo(k)fluoranthene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.8 0.9 0.5 0.4 0.6 0.3	30 criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 5 5 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
riginal	Duplicate		d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Fluoranthene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(båj)fluoranthene         Benzo(a)pyrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.8 0.9 0.5 0.4 0.6 0.3 0.5	30 criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48	\$ \$ <b>[ENV]</b> // <b>RPI</b> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
riginal	Duplicate		d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(bå)jfluoranthene         Benzo(ba)prene         Indeno(1,2,3-cd)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6 0.6 0.6	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.4 <0.1 0.8 0.9 0.5 0.4 0.6 0.3 0.5 0.5 0.5	30 criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48 58	\$ \$ <b>FEND</b> <b>RPI</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b>
riginal	Duplicate		d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(b&j)fluoranthene         Benzo(b/jluoranthene         Benzo(a)pyrene         Indeno(1,2,3-cd)pyrene         Dibenzo(a)nanthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6 0.6 <0.1	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.4 <0.1 0.4 <0.1 0.4 <0.1 0.5 0.5 0.4 0.5 0.5 0.5 <0.5 <0.1	30 criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48 50 200	9999955 (ENV)4999 995566 66000000000000000000000000000
riginal	Duplicate		d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(a)fluoranthene         Benzo(a)fluoranthene         Benzo(a)pyrene         Indeno(1,2,3-cd)pyrene         Dibenzo(ah)anthracene         Benzo(ah)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6 0.6 <0.1 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.5 0.5 0.7 0.5 0.7 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.7 0.5 0.7 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.5 0.5 0.7 0.4 0.5 0.5 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.5 0.7 0.5 0.7 0.5 0.5 0.7 0.5 0.7 0.5 0.5 0.7 0.5 0.5 0.5 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.4 <0.1 0.8 0.9 0.5 0.5 0.5 0.5 0.5 0.5 <0.5 <0.5 <0.1	30 criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48 50 200 54	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
riginal	Duplicate		d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(båj)fluoranthene         Benzo(a)pyrene         Indeno(1,2,3-cd)pyrene         Dibenzo(ah)anthracene         Carcinogenic PAHs, BaP TEQ <lor=0< td=""></lor=0<>	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6 0.6 <0.1 0.5 0.7 0.4 0.6 0.6 0.6 0.5 0.8	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.4 <0.1 0.8 0.9 0.5 0.5 0.5 0.5 0.5 <0.5 <0.5 <0.1 0.4 0.7	30 And: ME-(AU)- Criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48 50 200 54 36	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
riginal	Duplicate		d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(k)fluoranthene         Benzo(a)pyrene         Indeno(1,2,3-cd)pyrene         Dibenzo(ah)anthracene         Benzo(ghi)perylene         Carcinogenic PAHs, BaP TEQ <lor=0< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor< td=""></lor=lor<></lor=0<>	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6 0.6 <0.1 0.5 0.8 0.9	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.4 <0.1 0.8 0.9 0.5 0.5 0.4 0.6 0.3 0.5 0.5 <0.5 <0.1 0.4 0.3 0.5 0.5 0.5 <0.5 <0.1 0.4 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	30 And: ME-(AU)- Criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48 50 200 54 36 45	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
riginal	Duplicate		d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(a)pyrene         Indeno(1.2.3-cd)pyrene         Dibenzo(ah)anthracene         Carcinogenic PAHs, BaP TEQ <lor=0< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor< td=""></lor=lor<></lor=lor<></lor=0<>	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6 0.6 <0.1 0.5 0.7 0.4 0.6 0.6 0.6 0.5 0.8	0.45 0.45 <b>Meth</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.4 <0.1 0.8 0.9 0.5 0.5 0.4 0.6 0.3 0.5 0.5 <0.5 <0.1 0.4 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	30 And: ME-(AU)- Criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48 50 200 54 36 45 34	\$ \$ <b>FUND</b> <b>RPI</b> \$ <b>FUND</b> \$ <b>FUND</b>
riginal	Duplicate		d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(k)fluoranthene         Benzo(a)pyrene         Indeno(1,2,3-cd)pyrene         Dibenzo(ah)anthracene         Benzo(ghi)perylene         Carcinogenic PAHs, BaP TEQ <lor=0< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor< td=""></lor=lor<></lor=0<>	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6 0.6 <0.1 0.5 0.8 0.9	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.4 <0.1 0.8 0.9 0.5 0.5 0.4 0.6 0.3 0.5 0.5 <0.5 <0.1 0.4 0.3 0.5 0.5 0.5 <0.5 <0.1 0.4 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	30 And: ME-(AU)- Criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48 50 200 54 36 45	\$ \$ <b>FUND</b> <b>RPI</b> \$ <b>FUND</b> \$ <b>FUND</b>
riginal	Duplicate		d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(a)pyrene         Indeno(1.2.3-cd)pyrene         Dibenzo(ah)anthracene         Carcinogenic PAHs, BaP TEQ <lor=0< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor< td=""></lor=lor<></lor=lor<></lor=0<>	mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           TEQ (mg/kg)           TEQ (mg/kg)           TEQ (mg/kg)	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6 0.6 <0.1 0.5 0.8 0.9 0.9 0.9	0.45 0.45 <b>Meth</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.4 <0.1 0.8 0.9 0.5 0.5 0.4 0.6 0.3 0.5 0.5 <0.5 <0.1 0.4 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	30 And: ME-(AU)- Criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48 50 200 54 36 45 34	\$ \$ <b>FUND</b> <b>RPD</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b>
riginal	Duplicate	ons) in Soil	d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(a)pyrene         Indeno(1,2,3-cd)pyrene         Dibenzo(ah)anthracene         Benzo(ghi)pyrene         Dibenzo(ah)anthracene         Carcinogenic PAHs, BaP TEQ <lor=0< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td="">         Total PAH (18)</lor=lor></lor=0<>	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - - - - - - - - - - - -	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6 0.6 <0.1 0.5 0.8 0.9 0.9 6.9	0.45 0.45 0.45 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.4 <0.1 0.4 0.5 0.5 0.5 0.4 0.6 0.3 0.5 0.5 <0.1 0.4 0.5 0.5 <0.1 0.4 0.5 0.5 <0.5 <0.1 0.5 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	30 And: ME-(AU)- Criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48 50 200 54 36 45 34 43	\$ \$ <b>FUND</b> <b>RPU</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b> <b>S</b>
riginal	Duplicate	ons) in Soil	d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(båj)fluoranthene         Benzo(a)pyrene         Indeno(1,2,3-cd)pyrene         Dibenzo(ah)anthracene         Benzo(aphi)perylene         Carcinogenic PAHs, BaP TEQ <lor=0< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td="">         Total PAH (18)         d5-nitrobenzene (Surrogate)</lor=lor></lor=lor<></lor=lor<></lor=lor<></lor=0<>	mg/kg           Units           mg/kg           TEQ (mg/kg)           TEQ (mg/kg)           TEQ (mg/kg)           TEQ (mg/kg           mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Original 0.1 0.2 0.2 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6 0.6 <0.1 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.5 0.7 0.4 0.5 0.7 0.4 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.5 0.7 0.4 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.5 0.7 0.4 0.5 0.5 0.7 0.4 0.5 0.5 0.7 0.4 0.5 0.5 0.7 0.4 0.5 0.5 0.7 0.4 0.5 0.5 0.7 0.4 0.5 0.5 0.7 0.4 0.5 0.5 0.5 0.7 0.4 0.5 0.5 0.5 0.7 0.4 0.5 0.5 0.5 0.7 0.4 0.5 0.5 0.5 0.7 0.4 0.5 0.5 0.5 0.7 0.4 0.5 0.5 0.5 0.5 0.7 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.45 0.45 <b>Duplicate</b> 0.1 0.2 (0.2 (0.1 (0.1 (0.1) (0.4) (0.1) (0.4) (0.1) (0.4) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.1) (0.4) (0.7) (0.8) (0.7) (0.8) (0.7) (0.8) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)(0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.	30 criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48 50 200 54 36 45 34 43 30	\$ \$ <b>[ENV]</b> / <b>RPI</b> \$ <b>g</b> \$
riginal E177041.004	Duplicate	ons) in Soil	d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(b&j)fluoranthene         Benzo(a)anthracene         Chrysene         Benzo(a)anthracene         Dibenzo(a)anthracene         Benzo(a)anthracene         Benzo(a)inthracene         Benzo(a)pyrene         Indeno(1.2.3-cd)pyrene         Dibenzo(ah)anthracene         Benzo(a)inthracene         Benzo(a)pyrene         Indeno(1.2.3-cd)pyrene         Dibenzo(ah)anthracene         Benzo(phi)perylene         Carcinogenic PAHs, BaP TEQ <lor=0< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td="">         Total PAH (18)         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surrogate)</lor=lor></lor=lor<></lor=0<>	mg/kg           Units           mg/kg		0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6 0.6 <0.1 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 (0.1 (0.1 (0.1 (0.1) (0.4 (0.1) (0.4 (0.1) (0.4 (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (	30 criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48 50 200 54 36 45 34 43 30 30	9 9 9 9 9 9 9 9 9 9 9 9 5 5 6 6 6 6 6 6
riginal	Duplicate LB144195.014	ons) in Soil	d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Fluorene         Phenanthrene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(b&j)fluoranthene         Benzo(b)fluoranthene         Benzo(a)aptrene         Dibenzo(a)anthracene         Benzo(a)pyrene         Indeno(1,2,3-cd)pyrene         Dibenzo(ah)ithracene         Benzo(ghi)perylene         Carcinogenic PAHs, BaP TEQ <lor=0< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor< td="">         Carcologenic PAHs, BaP TEQ <lor=lor< td=""> <!--</td--><td>mg/kg           Units           mg/kg           mg/kg&lt;</td><td></td><td>0.5 Original 0.1 0.2 0.2 &lt;0.1 &lt;0.1 &lt;0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6 0.6 &lt;0.1 0.5 0.7 0.4 0.6 0.6 &lt;0.1 0.5 0.7 0.4 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5</td><td>0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 0.4 &lt;0.1 0.8 0.9 0.5 0.4 0.6 0.3 0.5 0.5 &lt;0.1 0.4 0.5 0.5 &lt;0.1 0.4 0.5 0.5 &lt;0.5 0.5 0.5 0.5 0.5 0.5</td><td>30 criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48 50 200 54 36 45 36 45 34 43 30 30 30 30</td><td>9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td></lor=lor<></lor=lor<></lor=lor<></lor=lor<></lor=lor<></lor=lor<></lor=lor<></lor=lor<></lor=lor<></lor=lor<></lor=lor<></lor=0<>	mg/kg           Units           mg/kg           mg/kg<		0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6 0.6 <0.1 0.5 0.7 0.4 0.6 0.6 <0.1 0.5 0.7 0.4 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 0.4 <0.1 0.8 0.9 0.5 0.4 0.6 0.3 0.5 0.5 <0.1 0.4 0.5 0.5 <0.1 0.4 0.5 0.5 <0.5 0.5 0.5 0.5 0.5 0.5	30 criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48 50 200 54 36 45 36 45 34 43 30 30 30 30	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
riginal E177041.004	Duplicate LB144195.014	ons) in Soil	d14-p-terphenyl (Surrogate)         Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Fluoranthene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(båj)fluoranthene         Benzo(a)apyrene         Indeno(1,2,3-cd)pyrene         Dibenzo(ah)anthracene         Benzo(a)pyrene         Dibenzo(ah)anthracene         Benzo(a)pyrene         Dibenzo(ah)anthracene         Benzo(ah)anthracene         Carcinogenic PAHs, BaP TEQ <lor=lor< td="">         Carcinogenic PAHs, BaP TEQ <lor=lor< td="">         Carcinogenic PAHs</lor=lor<></lor=lor<>	mg/kg           Units           mg/kg		0.5 Original 0.1 0.2 0.2 <0.1 <0.1 <0.1 0.5 0.1 1.0 1.1 0.6 0.5 0.7 0.4 0.6 0.6 <0.1 0.5 0.7 0.4 0.6 0.5 0.7 0.4 0.6 0.5 0.5 0.5 0.9 0.9 0.5 0.5 0.5 0.5 0.5 <0.1 <0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.45 0.45 <b>Duplicate</b> 0.1 0.2 0.2 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1	30 criteria % 117 84 95 155 200 200 52 130 41 40 50 51 45 58 48 50 200 54 36 45 34 34 30 30 30 200	\$ \$ <b>{ENV}</b> <b>RPI</b> \$ <b>6</b> 6 <b>6</b> 6 <b>6</b> 6 <b>6</b> 6 <b>6</b> 6 <b>7</b> 7 <b>1</b> 1 1 1 1 1 1 1 1 1 1 1 1 1



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

	Aromatic Hydrocarbo	,							[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE177041.011	LB144195.027		Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0.05	200	0
			Anthracene	mg/kg	0.1	<0.1	0.01	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0.07	163	0
			Pyrene	mg/kg	0.1	<0.1	0.06	184	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.03	200	0
			Chrysene	mg/kg	0.1	<0.1	0.03	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.03	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.02	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.02	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.01	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>0</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.48	30	4
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
SE177041.022	LB144196.022		Naphthalene	mg/kg	0.1	<0.1	0.03	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0.04	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0.03	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0.01	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0.01	200	0
			Fluorene	mg/kg	0.1	<0.1	0.01	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0.11	135	10
			Anthracene	mg/kg	0.1	<0.1	0.02	200	0
			Fluoranthene	mg/kg	0.1	0.1	0.19	93	38
			Pyrene	mg/kg	0.1	0.1	0.19	91	30
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.09	163	0
			Chrysene	mg/kg	0.1	<0.1	0.09	163	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.09	163	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.05	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.09	163	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.03	200	0
					0.1	<0.1	0.03	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.04	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.04	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td></td><td></td><td></td><td></td><td>0</td></lor=0<>	TEQ (mg/kg)					0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>0.242</td><td>134</td><td></td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.242	134	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	0.49	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.43	30	5
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.45	30	14
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.45	30	9
CBs in Soil							Meth	od: ME-(AU)-	(ENVJAN
Original	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	۶ RPD
SE177041.004	LB144195.014		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg		0	0	30	0
								30	0



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

CBs in Soil (conti	nued)						Meth	od: ME-(AU)	-[ENV]AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE177041.011	LB144195.026		Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg		0	0.168	30	2
SE177041.022	LB144196.022	Surroyates	Arochlor 1016		0.2	<0.2	0.108	200	0
BE177041.022	LB144190.022			mg/kg			0		0
			Arochlor 1221	mg/kg	0.2	<0.2		200	
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.143	30	10
otal Recoverable	Elements in Soil/Was	ste Solids/Materia	als by ICPOES				Method: ME	-(AU)-IENVIA	N040/A
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	
			Arsenic. As						
E177010.001	LB144415.024			mg/kg	3	13	13	38	2
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	139	0
			Chromium, Cr	mg/kg	0.3	6.3	8.0	37	24
			Copper, Cu	mg/kg	0.5	26	22	32	18
			Nickel, Ni	mg/kg	0.5	11	10	35	6
			Lead, Pb	mg/kg	1	25	26	34	4
			Zinc, Zn	mg/kg	0.5	180	170	31	6
SE177041.010	LB144414.014		Arsenic, As	mg/kg	3	8	9	42	16
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	136	0
			Chromium, Cr	mg/kg	0.3	9.1	12	35	31
			Copper, Cu	mg/kg	0.5	21	13	33	42 🤅
			Nickel, Ni	mg/kg	0.5	2.7	2.5	49	6
			Lead, Pb	mg/kg	1	430	440	30	1
			Zinc, Zn	mg/kg	0.5	280	270	31	3
SE177041.019	LB144414.024		Arsenic, As	mg/kg	3	6	6	46	3
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.3	17	9.2	34	57 (
			Copper, Cu	mg/kg	0.5	25	25	32	2
			Nickel, Ni	mg/kg	0.5	7.1	6.3	37	11
			Lead, Pb	mg/kg	1	18	17	36	4
			Zinc, Zn	mg/kg	0.5	23	24	39	2
25477044 020	1.044445.044					6	8	44	19
SE177041.029	LB144415.014		Arsenic, As Cadmium, Cd	mg/kg	<u> </u>	<0.3	<0.3	150	0
				mg/kg					
			Chromium, Cr	mg/kg	0.3	8.2	14	34	55 (
			Copper, Cu	mg/kg	0.5	13	22	33	52 (
			Nickel, Ni	mg/kg	0.5	2.9	3.8	45	27
			Lead, Pb	mg/kg	1	320	490	30	42 (
			Zinc, Zn	mg/kg	0.5	190	310	31	47 (
ace Metals (Diss	olved) in Water by IC	PMS					Meth	od: ME-(AU)	-[ENV]A
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE177082.001	LB144357.014		Arsenic, As	μg/L	1	5.18	5.083	34	2
	20144007.014		Cadmium, Cd		0.1	0.035	0.041	200	0
			· · · · ·	µg/L					
			Chromium, Cr	μg/L	1	2.056	2.166	62	5
			Copper, Cu	µg/L	1	63.813	64.345	17	1
			Lead, Pb	µg/L	1	3.893	3.976	40	2
			Nickel, Ni	µg/L	1	8.31	8.307	27	0
			Zinc, Zn	μg/L	5	136.039	135.198	19	1
			200, 20	P9/2	0	100.000	100.100	10	



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

	solved) in Water by IC	a mo (conunued)						od: ME-(AU)	<u> </u>
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE177202.001	LB144357.020		Arsenic, As	μg/L	1	1.519	1.434	83	6
			Cadmium, Cd	µg/L	0.1	0.045	0.05	200	0
			Chromium, Cr	μg/L	1	1.738	1.753	72	1
			Copper, Cu	µg/L	1	43.5	43.838	17	1
			Lead, Pb	µg/L	1	2.306	2.301	58	0
			Nickel, Ni	µg/L	1	3.853	3.783	41	2
			Zinc, Zn	μg/L	5	58.389	60.286	23	3
			· /						
	erable Hydrocarbons	) in Soli						od: ME-(AU)	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
SE177041.004	LB144195.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE177041.011	LB144195.026		TRH C10-C14	mg/kg	20	<20	0	200	0
SE177041.011	ED 144 133.020		TRH C15-C28		45	<45	0	200	0
				mg/kg					
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
SE177041.022	LB144196.021		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
		Intern Bando	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
					90	<90	0	200	0
			TRH >C16-C34 (F3)	mg/kg					
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
RH (Total Recov	erable Hydrocarbons	) in Water					Meth	od: ME-(AU)	-[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE177041.030	LB144250.021		TRH C10-C14	µg/L	50	<50	0	200	0
			TRH C15-C28	μg/L	200	<200	0	200	0
			TBH C29-C36	μg/L	200	<200	0	200	0
			TRH C37-C40	μg/L	200	<200	0	200	0
							0		0
			TRH C10-C36	μg/L	450	<450		200	
			TRH C10-C40	µg/L	650	<650	0	200	0
		TRH F Bands	TRH >C10-C16	µg/L	60	<60	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	0	200	0
			TRH >C16-C34 (F3)	µg/L	500	<500	0	200	0
			TRH >C34-C40 (F4)	µg/L	500	<500	0	200	0
OC's in Soil							Meth	od: ME-(AU)	-[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
		Monoguelia							
SE177041.010	LB144209.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
				ma llen	0.2	<0.2	<0.2	200	0
			m/p-xylene	mg/kg					
			m/p-xylene o-xylene	mg/kg	0.2	<0.1	<0.1	200	0



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

/OC's in Soil (con Original	-		Paramotor	Unito	LOR-	Original		od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE177041.010	LB144209.014	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.0	6.0	50	20
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.4	4.3	50	3
			d8-toluene (Surrogate)	mg/kg	-	4.3	4.2	50	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	4.2	50	12
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE177041.020	LB144209.025	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Delvevelie						200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1		
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.0	5.9	50	16
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.7	3.6	50	3
			d8-toluene (Surrogate)	mg/kg	-	4.0	3.8	50	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.0	4.0	50	1
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE177041.021	LB144210.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.2	<0.1	<0.1	200	0
		Bolyoyolio			0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg					
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.8	3.7	50	3
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.3	4.2	50	1
			d8-toluene (Surrogate)	mg/kg	-	3.9	3.8	50	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	4.1	50	2
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE177041.029	LB144210.026	Monocyclic	Benzene	mg/kg	0.1	<0.1	0.04	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	0.01	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	0	200	0
			m/p-xylene	mg/kg	0.2	<0.2	0	200	0
					0.1	<0.2	0	200	0
		Determine	o-xylene	mg/kg					
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.11	50	0
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.0	4.97	50	0
			d8-toluene (Surrogate)	mg/kg	-	5.1	4.39	50	16
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.4	4.3	50	3
		Totals	Total Xylenes	mg/kg	0.3	<0.3	0	200	0
			Total BTEX	mg/kg	0.6	<0.6	0.05	200	0
/OCs in Water							Meth	od: ME-(AU)-	
									· ·
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE177107.002	LB144312.022	Monocyclic	Benzene	μg/L	0.5	0.03	0.02	200	0
		Aromatic	Toluene	μg/L	0.5	0.05	0.03	200	0
			Ethylbenzene	µg/L	0.5	0.02	0.01	200	0
			m/p-xylene	μg/L	1	0.04	0.01	200	0
			o-xylene	μg/L	0.5	0.01	0.01	200	0
		Polycyclic	Naphthalene	μg/L	0.5	0.01	0.01	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.58	5.54	30	1
		Gunoyates				4.97	4.94	30	1
			d4-1,2-dichloroethane (Surrogate)	μg/L					
			d8-toluene (Surrogate)	μg/L	-	4.76	4.76	30	0
			Bromofluorobenzene (Surrogate)	μg/L	-	5.32	4.91	30	8
SE177107.009	LB144312.023	Monocyclic	Benzene	μg/L	0.5	0.03	0.02	200	0
		Aromatic	Toluene	μg/L	0.5	0.04	0.03	200	0
			Ethylbenzene	μg/L	0.5	0.02	0.01	200	0
			m/p-xylene	μg/L	1	0.02	0.01	200	0
			o-xylene	μg/L	0.5	0.01	0.01	200	0
				ro-					

µg/L

0.5

0

0

200

Polycyclic

Naphthalene

0



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

OCs in Water (co	ontinued)						Meth	nod: ME-(AU)-	(ENVJAN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E177107.009	LB144312.023	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.68	5.46	30	4
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.06	4.96	30	2
			d8-toluene (Surrogate)	μg/L	-	4.93	4.64	30	6
			Bromofluorobenzene (Surrogate)	μg/L	-	5.19	4.91	30	6
olatile Petroleum	Hydrocarbons in Soi	1					Meth	nod: ME-(AU)-	[ENV]A
Driginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
SE177041.010	LB144209.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
	20111200.011		TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg		5.0	6.0	30	20
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.4	4.3	30	3
			d8-toluene (Surrogate)	mg/kg	-	4.3	4.2	30	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	4.2	30	12
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE177041.020	LB144209.025		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.0	5.9	30	16
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.7	3.6	30	3
			d8-toluene (Surrogate)	mg/kg	-	4.0	3.8	30	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.0	4.0	30	1
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE177041.021	LB144210.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.8	3.7	30	3
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.3	4.2	30	1
			d8-toluene (Surrogate)	mg/kg	-	3.9	3.8	30	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	4.1	30	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE177041.029	LB144210.026		TRH C6-C10	mg/kg	25	<25	0	200	0
			TRH C6-C9	mg/kg	20	<20	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.11	30	0
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.0	4.97	30	0
			d8-toluene (Surrogate)	mg/kg	-	5.1	4.39	30	16
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.4	4.3	30	3
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	0.04	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	-0.05	200	0
olatile Petroleum	Hydrocarbons in Wa	iter					Meth	nod: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
SE177107.002	LB144312.022		TRH C6-C10	µg/L	50	0	0	200	0
52111101.002	20144012.022		TRH C6-C9	μg/L	40	0	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.58	5.54	30	1
		Gunogates	d4-1,2-dichloroethane (Surrogate)	μg/L		4.97	4.94	30	1
			d8-toluene (Surrogate)	μg/L	-	4.76	4.76	30	0
			Bromofluorobenzene (Surrogate)	μg/L	-	5.32	4.70	30	8
		VPH F Bands	Benzene (F0)	μg/L	0.5	0.03	0.02	200	0
		VIII Danus	TRH C6-C10 minus BTEX (F1)	μg/L	50	-0.15	-0.08	200	0
E177107.009	LB144312.023		TRH C6-C10	μg/L	50	-0.15	-0.08	200	0
	LD 1773 12.023		TRH C6-C9		40	0	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L μg/L	- 40	5.68	5.46	30	4
		Sunogates	d4-1,2-dichloroethane (Surrogate)			5.08	4.96	30	4
			d8-toluene (Surrogate)	µg/L	-	4.93	4.96	30	6
			Bromofluorobenzene (Surrogate)	µg/L		4.93 5.19	4.64	30	
			Diomoliuorobenzene (Sunogale)	µg/L	-	0.19	4.91	30	6
		VPH F Bands	Benzene (F0)	μg/L	0.5	0.03	0.02	200	0



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### Method: ME-(AU)-[ENV]AN312 Mercury in Soil Sample Numb Expected Criteria % Recovery % Parameter Units LOR Result LB144375.002 0.05 70 - 130 Mercury mg/kg 0.19 0.2 97 LB144380.002 Mercury mg/kg 0.05 0.20 0.2 70 - 130 99

OC Pesticides in S	Soil					N	Nethod: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB144195.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	122
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	124
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	119
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	118
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	113
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	93
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.15	40 - 130	106
LB144196.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	83
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	86
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	76
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	87
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	113
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	79
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.15	40 - 130	86
OP Pesticides in S	Soil					N	vethod: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB144195.002		Dichlorvos						
		Dichlorvos	mg/kg	0.5	1.7	2	60 - 140	84
		Diazinon (Dimpylate)	mg/kg	0.5	1.7 1.5	2	60 - 140 60 - 140	84 77
		Diazinon (Dimpylate)	mg/kg	0.5	1.5	2	60 - 140	77
	Surrogates	Diazinon (Dimpylate) Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg mg/kg	0.5 0.2	1.5 1.8	2	60 - 140 60 - 140	77 90
	Surrogates	Diazinon (Dimpylate) Chlorpyrifos (Chlorpyrifos Ethyl) Ethion	mg/kg mg/kg mg/kg	0.5 0.2 0.2	1.5 1.8 1.5	2 2 2	60 - 140 60 - 140 60 - 140	77 90 77
LB144196.002	Surrogates	Diazinon (Dimpylate) Chlorpyrifos (Chlorpyrifos Ethyl) Ethion 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg	0.5 0.2 0.2 -	1.5 1.8 1.5 0.5	2 2 2 0.5	60 - 140 60 - 140 60 - 140 40 - 130	77 90 77 100
LB144196.002	Surrogates	Diazinon (Dimpylate) Chlorpyrifos (Chlorpyrifos Ethyl) Ethion 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.2 0.2 -	1.5 1.8 1.5 0.5 0.5	2 2 2 0.5 0.5	60 - 140 60 - 140 60 - 140 40 - 130 40 - 130	77 90 77 100 102
LB144196.002	Surrogates	Diazinon (Dimpylate) Chlorpyrifos (Chlorpyrifos Ethyl) Ethion 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Dichlorvos	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.2 0.2 - - 0.5	1.5 1.8 1.5 0.5 0.5 1.9	2 2 0.5 0.5 2	60 - 140 60 - 140 60 - 140 40 - 130 40 - 130 60 - 140	77 90 77 100 102 95
LB144196.002	Surrogates	Diazinon (Dimpylate) Chlorpyrifos (Chlorpyrifos Ethyl) Ethion 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Dichlorvos Diazinon (Dimpylate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.2 0.2 - 0.5 0.5	1.5 1.8 1.5 0.5 0.5 1.9 1.9	2 2 0.5 0.5 2 2 2	60 - 140 60 - 140 60 - 140 40 - 130 40 - 130 60 - 140 60 - 140	77 90 77 100 102 95 96
LB144196.002	Surrogates	Diazinon (Dimpylate) Chlorpyrifos (Chlorpyrifos Ethyl) Ethion 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Dichlorvos Diazinon (Dimpylate) Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.2 0.2 - 0.5 0.5 0.2	1.5 1.8 1.5 0.5 0.5 1.9 1.9 1.8	2 2 0.5 0.5 2 2 2 2 2	60 - 140           60 - 140           60 - 140           40 - 130           40 - 130           60 - 140           60 - 140           60 - 140           60 - 140	77 90 77 100 102 95 96 90
LB144196.002		Diazinon (Dimpylate) Chlorpyrifos (Chlorpyrifos Ethyl) Ethion 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Dichlorvos Diazinon (Dimpylate) Chlorpyrifos (Chlorpyrifos Ethyl) Ethion	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.2 0.2 - - 0.5 0.5 0.5 0.2 0.2	1.5 1.8 1.5 0.5 0.5 1.9 1.9 1.8 1.6	2 2 0.5 0.5 2 2 2 2 2 2 2 2	60 - 140           60 - 140           60 - 140           40 - 130           40 - 130           60 - 140           60 - 140           60 - 140           60 - 140	77 90 77 100 102 95 96 90 80
		Diazinon (Dimpylate)         Chlorpyrifos (Chlorpyrifos Ethyl)         Ethion         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         Diazinon (Dimpylate)         Chlorpyrifos (Chlorpyrifos Ethyl)         Ethion         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         d14-p-terphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.2 0.2 - 0.5 0.5 0.5 0.2 0.2 -	1.5 1.8 1.5 0.5 0.5 1.9 1.9 1.8 1.6 0.5	2 2 0.5 0.5 2 2 2 2 2 0.5 0.5	60 - 140           60 - 140           60 - 140           40 - 130           40 - 130           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140	77 90 77 100 95 96 90 80 102 98
LB144196.002 PAH (Polynuclear Sample Number	Surrogates Aromatic Hydrocea	Diazinon (Dimpylate)         Chlorpyrifos (Chlorpyrifos Ethyl)         Ethion         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         Dichlorvos         Diazinon (Dimpylate)         Chlorpyrifos (Chlorpyrifos Ethyl)         Ethion         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         d14-p-terphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.2 0.2 - 0.5 0.5 0.5 0.2 0.2 -	1.5 1.8 1.5 0.5 0.5 1.9 1.9 1.8 1.6 0.5	2 2 0.5 0.5 2 2 2 2 2 0.5 0.5	60 - 140           60 - 140           60 - 140           60 - 140           40 - 130           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 130	77 90 77 100 95 96 90 80 102 98 98
PAH (Polynuclear	Surrogates Aromatic Hydrocea	Diazinon (Dimpylate)         Chlorpyrifos (Chlorpyrifos Ethyl)         Ethion         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         Dichlorvos         Diazinon (Dimpylate)         Chlorpyrifos (Chlorpyrifos Ethyl)         Ethion         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         ut4-p-terphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.2 0.2 - - 0.5 0.5 0.5 0.2 0.2 - -	1.5 1.8 1.5 0.5 0.5 1.9 1.9 1.8 1.6 0.5 0.5	2 2 0.5 0.5 2 2 2 2 2 0.5 0.5	60 - 140 60 - 140 60 - 140 40 - 130 40 - 130 60 - 140 60 - 140 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130	77 90 77 100 95 96 90 80 102 98
<mark>AH (Polynuclear</mark> Sample Number	Surrogates Aromatic Hydrocea	Diazinon (Dimpylate) Chlorpyrifos (Chlorpyrifos Ethyl) Ethion 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Dichlorvos Diazinon (Dimpylate) Chlorpyrifos (Chlorpyrifos Ethyl) Ethion 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) d14-p-terphenyl (Surrogate) trbons) In Soll Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.2 0.2 - - 0.5 0.5 0.5 0.2 0.2 - - - LOR	1.5 1.8 1.5 0.5 0.5 1.9 1.9 1.9 1.8 1.6 0.5 0.5 <b>Result</b>	2 2 0.5 0.5 2 2 2 2 2 0.5 0.5 0.5	60 - 140 60 - 140 60 - 140 40 - 130 40 - 130 60 - 140 60 - 140 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130 Criteria %	77 90 77 100 95 96 90 80 102 98 98 U)-[ENV]AN Recovery

		Acenaphthylene	mg/kg	0.1	3.9	4	60 - 140	96
		Acenaphthene	mg/kg	0.1	3.9	4	60 - 140	97
		Phenanthrene	mg/kg	0.1	4.4	4	60 - 140	110
		Anthracene	mg/kg	0.1	4.7	4	60 - 140	118
		Fluoranthene	mg/kg	0.1	4.6	4	60 - 140	114
		Pyrene	mg/kg	0.1	4.5	4	60 - 140	114
		Benzo(a)pyrene	mg/kg	0.1	3.7	4	60 - 140	93
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	96
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	100
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	102
LB144196.002		Naphthalene	mg/kg	0.1	4.1	4	60 - 140	103
		Acenaphthylene	mg/kg	0.1	4.3	4	60 - 140	107
		Acenaphthene	mg/kg	0.1	4.0	4	60 - 140	101
		Phenanthrene	mg/kg	0.1	4.1	4	60 - 140	102
		Anthracene	mg/kg	0.1	4.4	4	60 - 140	110
		Fluoranthene	mg/kg	0.1	4.3	4	60 - 140	107
		Pyrene	mg/kg	0.1	4.2	4	60 - 140	105
		Benzo(a)pyrene	mg/kg	0.1	4.8	4	60 - 140	120
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	100
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	102
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	98

Parameter

Method: ME-(AU)-[ENV]AN420



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### Method: ME-(AU)-[ENV]AN420

PCBs in Soil (continued) Method: ME-(AU)-[El								U)-[ENV]AN420
	Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
	LB144195.002	Arochlor 1260	mg/kg	0.2	0.5	0.4	60 - 140	122
	LB144196.002	Arochlor 1260	mg/kg	0.2	0.5	0.4	60 - 140	115

### Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Pacauanu
Sample Number LB144414.002				3	340 Result	Expected 325		
_B144414.002		Arsenic, As	mg/kg	0.3			80 - 120	105
		Cadmium, Cd	mg/kg		450	416.6	69 - 131	109
		Chromium, Cr	mg/kg	0.3	38	35.2	80 - 120	107
		Copper, Cu	mg/kg	0.5	350	314	80 - 120	111
		Nickel, Ni	mg/kg	0.5	200	183	80 - 120	109
		Lead, Pb	mg/kg	1	99	91.5	80 - 120	108
		Zinc, Zn	mg/kg	0.5	300	275	80 - 120	109
B144415.002		Arsenic, As	mg/kg	3	340	325	80 - 120	106
		Cadmium, Cd	mg/kg	0.3	480	416.6	69 - 131	115
		Chromium, Cr	mg/kg	0.3	37	35.2	80 - 120	106
		Copper, Cu	mg/kg	0.5	350	314	80 - 120	112
		Nickel, Ni	mg/kg	0.5	200	183	80 - 120	109
		Lead, Pb	mg/kg	1	99	91.5	80 - 120	108
		Zinc, Zn	mg/kg	0.5	300	275	80 - 120	109
race Metals (Diss	olved) in Water by	ICPMS				1	Method: ME-(Al	U)-[ENV]AN:
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B144357.002		Arsenic, As		1	20	20	80 - 120	101
B144337.002		Cadmium, Cd	μg/L	0.1	20	20	80 - 120	101
			μg/L	1	21	20	80 - 120	105
		Chromium, Cr	μg/L					
		Copper, Cu	μg/L	1	21	20	80 - 120	104
		Lead, Pb	μg/L	1	21	20	80 - 120	103
		Nickel, Ni	μg/L	1	21	20	80 - 120	106
		Zinc, Zn	µg/L	5	21	20	80 - 120	105
RH (Total Recove	erable Hydrocarbor	ns) in Soil				I	Method: ME-(Al	<b>J)-[ENV]AN</b> 4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B144195.002		TRH C10-C14	mg/kg	20	38	40	60 - 140	95
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	105
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	75
	TRH F Bands	TRH >C10-C16	mg/kg	25	43	40	60 - 140	108
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	90
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	75
_B144196.002		TRH C10-C14	mg/kg	20	45	40	60 - 140	113
20111100.002		TRH C15-C28	mg/kg	45	<45	40	60 - 140	98
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	78
	TRH F Bands	TRH >C10-C16		25	44	40	60 - 140	110
	TRITI Danus	TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	88
			mg/kg	120	<120	20	60 - 140	75
		TRH >C34-C40 (F4)	mg/kg	120	<120			
RH (Total Recove	erable Hydrocarboi	ns) in Water				1	Method: ME-(Al	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B144250.002		TRH C10-C14	µg/L	50	1100	1200	60 - 140	95
		TRH C15-C28	µg/L	200	1400	1200	60 - 140	114
		TRH C29-C36	μg/L	200	1500	1200	60 - 140	124
	TRH F Bands	TRH >C10-C16	μg/L	60	1300	1200	60 - 140	105
	Dando	TRH >C16-C34 (F3)	μg/L	500	1500	1200	60 - 140	103
		TRH >C34-C40 (F4)		500	760	600	60 - 140	123
		INT ~034-040 (F4)	μg/L	000	100			
OC's in Soil						I	Method: ME-(Al	J)-[ENV]AN
		Parameter	Units	LOR	Result	Expected	Criteria %	Deserve

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB144209.002	Monocyclic	Benzene	mg/kg	0.1	2.0	2.9	60 - 140	70
	Aromatic	Toluene	mg/kg	0.1	3.2	2.9	60 - 140	109
		Ethylbenzene	mg/kg	0.1	2.1	2.9	60 - 140	74
		m/p-xylene	mg/kg	0.2	4.5	5.8	60 - 140	77
		o-xylene	mg/kg	0.1	2.0	2.9	60 - 140	70
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.9	5	60 - 140	98



SE177041 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Completion		Devene 46 v	11.36		Decult		Method: ME-(AL	<u> </u>
Sample Numbe		Parameter	Units	LOR	Result	Expected	Criteria %	
LB144209.002	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	5	60 - 140	91
		d8-toluene (Surrogate)	mg/kg	-	4.2	5	60 - 140	83
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.0	5	60 - 140	99
_B144210.002	Monocyclic	Benzene	mg/kg	0.1	2.1	2.9	60 - 140	72
	Aromatic	Toluene	mg/kg	0.1	2.1	2.9	60 - 140	71
		Ethylbenzene	mg/kg	0.1	2.3	2.9	60 - 140	79
		m/p-xylene	mg/kg	0.2	4.5	5.8	60 - 140	77
	-	o-xylene	mg/kg	0.1	2.3	2.9	60 - 140	78
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.6	5	60 - 140	73
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.3	5	60 - 140	86
		d8-toluene (Surrogate)	mg/kg	-	4.0	5	60 - 140	80
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.3	5	60 - 140	86
OCs in Water						N	Nethod: ME-(Al	J)-[ENV]AN
Sample Numbe	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB144312.002	Monocyclic	Benzene	µg/L	0.5	50	45.45	60 - 140	110
	Aromatic	Toluene	µg/L	0.5	50	45.45	60 - 140	109
		Ethylbenzene	µg/L	0.5	49	45.45	60 - 140	109
		m/p-xylene	µg/L	1	99	90.9	60 - 140	109
		o-xylene	µg/L	0.5	49	45.45	60 - 140	109
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	3.6	5	60 - 140	72
		d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.0	5	60 - 140	80
		d8-toluene (Surrogate)	µg/L	-	4.2	5	60 - 140	84
		Bromofluorobenzene (Surrogate)	µg/L	-	4.5	5	60 - 140	89
/olatile Petroleun	n Hydrocarbons in §	Soil				N	Method: ME-(Al	I)-IENVIAN
Sample Numbe		Parameter	Units	LOR	_			
					Result	Expected	Criteria %	Recoverv
I B144209 002		TBH C6-C10			Result	Expected	Criteria % 60 - 140	
LB144209.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	80
LB144209.002	Surrogates	TRH C6-C9	mg/kg mg/kg	25 20	<25 <20	24.65 23.2	60 - 140 60 - 140	80 73
LB144209.002	Surrogates	TRH C6-C9 Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg	25 20 -	<25 <20 4.9	24.65 23.2 5	60 - 140 60 - 140 60 - 140	80 73 98
LB144209.002	Surrogates	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg	25 20 - -	<25 <20 4.9 4.6	24.65 23.2 5 5	60 - 140 60 - 140 60 - 140 60 - 140	80 73 98 91
LB144209.002	Surrogates	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg	25 20 -	<25 <20 4.9 4.6 4.2	24.65 23.2 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	80 73 98 91 83
LB144209.002		TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 20 - - - -	<25 <20 4.9 4.6 4.2 5.0	24.65 23.2 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	80 73 98 91 83 99
	Surrogates VPH F Bands	TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 20 - - - - 25	<25 <20 4.9 4.6 4.2 5.0 <25	24.65 23.2 5 5 5 5 5 7.25	60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140	80 73 98 91 83 99 82
		TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         TRH C6-C10	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 20 - - - 25 25	<25 <20 4.9 4.6 4.2 5.0 <25 <25	24.65 23.2 5 5 5 5 7.25 24.65	60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140	80 73 98 91 83 99 82 80
	VPH F Bands	TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         TRH C6-C9	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 20 - - 25 25 20	<25 <20 4.9 4.6 4.2 5.0 <25 <25 <25 <20	24.65 23.2 5 5 5 5 7.25 24.65 23.2	60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140	80 73 98 91 83 99 82 80 66
		TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         TRH C6-C10         TRH C6-C9         Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 20 - - 25 25 20 -	<25 <20 4.9 4.6 4.2 5.0 <25 <25 <25 <20 3.6	24.65 23.2 5 5 5 7.25 24.65 23.2 5	60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140	80 73 98 91 83 99 82 80 66 73
	VPH F Bands	TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         TRH C6-C10         TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 20 - - 25 25 20 - -	<25 <20 4.9 4.6 4.2 5.0 <25 <25 <20 3.6 4.3	24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5	60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140	80 73 98 91 83 99 82 80 66 73 86
	VPH F Bands	TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         TRH C6-C10         TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 20 - - 25 25 20 - - - -	<25 <20 4.9 4.6 4.2 5.0 <25 <25 <20 3.6 4.3 4.0	24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5	60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140	80 73 98 91 83 99 82 80 66 73 86 80
	VPH F Bands Surrogates	TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluoromethane (Surrogate)         Bromofluoromethane (Surrogate)	mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg	25 20 - - 25 25 20 - - - -	<25 <20 4.9 4.6 4.2 5.0 <25 <25 <25 <20 3.6 4.3 4.0 4.3	24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5	60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140	80 73 98 91 83 99 82 80 66 73 86 80 86
LB144210.002	VPH F Bands Surrogates VPH F Bands	TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10         TRH C6-C9         Dibromofluorobenzene (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 20 - - 25 25 20 - - - -	<25 <20 4.9 4.6 4.2 5.0 <25 <25 <20 3.6 4.3 4.0	24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 7.25	60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140	73 98 91 83 99 82 80 66 73 86 80 86 90
LB144210.002 [/] olatile Petroleun	VPH F Bands Surrogates VPH F Bands	TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)	mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg	25 20 - - 25 25 20 - - - - 25 25	<25 <20 4.9 4.6 4.2 5.0 <25 <25 <20 3.6 4.3 4.0 4.3 <25	24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 7.25	60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140	80 73 98 91 83 99 82 80 66 73 86 80 86 80 86 90
LB144210.002 [/] olatile Petroleun Sample Numbe	VPH F Bands Surrogates VPH F Bands	TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10         TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10         TRH C6-C9         Dibromofluoroethane (Surrogate)         d8-toluene (Surrogate)         TRH C6-C10 minus BTEX (F1)         Vater         Parameter	mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg	25 20 - - 25 25 20 - - - 25 25 20 - - 25	<25 <20 4.9 4.6 4.2 5.0 <25 <25 <20 3.6 4.3 4.0 4.3 <25 Result	24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 7.25 <b>X</b>	60 - 140 60 - 140 Kethod: ME-(AL Criteria %	80 73 98 91 83 99 82 80 66 73 86 80 86 80 86 90 90 90 86 73 86 80 86 80 80 86 80 80 86
LB144210.002 [/] olatile Petroleun	VPH F Bands Surrogates VPH F Bands	TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         TRH C6-C10         TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         d8-toluene (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         Vater         Parameter         TRH C6-C10	mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg	25 20 - - 25 25 20 - - - - 25 25	<25 <20 4.9 4.6 4.2 5.0 <25 <25 <20 3.6 4.3 4.0 4.3 <25	24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 7.25	60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140	80 73 98 91 83 99 82 80 66 73 86 80 86 80 86 90
LB144210.002 ['] olatile Petroleun Sample Numbe	VPH F Bands Surrogates VPH F Bands	TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10         TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10         TRH C6-C9         Dibromofluoroethane (Surrogate)         d8-toluene (Surrogate)         TRH C6-C10 minus BTEX (F1)         Vater         Parameter	mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg	25 20 - - 25 25 20 - - - 25 25 20 - - 25	<25 <20 4.9 4.6 4.2 5.0 <25 <25 <20 3.6 4.3 4.0 4.3 <25 Result	24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 7.25 <b>X</b> 24.65	60 - 140 60 - 140 Kethod: ME-(AL Criteria %	80 73 98 91 83 99 82 80 66 73 86 80 86 80 86 90 90 90 90 86
LB144210.002 ['] olatile Petroleun Sample Numbe	VPH F Bands Surrogates VPH F Bands	TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         TRH C6-C10         TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         d8-toluene (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         Vater         Parameter         TRH C6-C10	mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg	25 20 - - 25 25 20 - - - 25 25 20 - - 25 20 50	<25 <20 4.9 4.6 4.2 5.0 <25 <25 <20 3.6 4.3 4.0 4.3 4.0 4.3 <25 <b>Result</b> 930	24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 7.25 24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5 5 7.25 24.65 23.2	60 - 140 60 - 140 <b>Kethod: ME-(AL Criteria %</b> 60 - 140	80 73 98 91 83 99 82 80 66 73 86 80 86 90 90 90 90 90 90 90 98
LB144210.002 ['] olatile Petroleun Sample Numbe	VPH F Bands Surrogates VPH F Bands n Hydrocarbons in \ r	TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         TRH C6-C10         TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         Vater         Parameter         TRH C6-C10	mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg	25 20 - - 25 25 25 20 - - - 25 25 20 - - 25 25 20 40	<25 <20 4.9 4.6 4.2 5.0 <25 <25 <220 3.6 4.3 4.0 4.3 4.0 4.3 <25 <b>Result</b> 930 760	24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 7.25 24.65 23.2 2 24.65 23.2 2 24.65 25 24.2 2 24.65 23.2 2 24.65 25 24.2 2 24.65 25 24.65 24.2 2 24.65 25 24.65 25 24.65 25 24.65 25 24.65 25 24.65 25 24.65 25 24.65 25 24.65 25 24.65 25 25 24.65 25 25 24.65 25 25 24.65 25 26 24.65 25 26 26 26 26 26 26 26 26 26 26 26 26 26	60 - 140 60 - 140 <b>Kethod: ME-(AL Criteria %</b> 60 - 140 60 - 140	80 73 98 91 83 99 82 80 66 66 73 86 80 86 80 86 90 90 90 90 90 90 90 88 90
LB144210.002 ['] olatile Petroleun Sample Numbe	VPH F Bands Surrogates VPH F Bands n Hydrocarbons in \ r	TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         TRH C6-C10         TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         Vater         Parameter         TRH C6-C10         TRH C6-C10         TRH C6-C10         TRH C6-C10         TRH C6-C9         Dibromofluoromethane (Surrogate)	mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg<	25 20 - - 25 25 20 - - - 25 25 20 - - 25 25 20 - - 25 25 20 - - 25 20 - - 25 20 20 20 20 20 20 20 20 20 20 20 20 20	<25 <20 4.9 4.6 4.2 5.0 <25 <25 <25 <20 3.6 4.3 4.0 4.3 <25 <b>Rosult</b> 930 760 4.3	24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 7.25 <b>X</b> 23.2 5 5 5 5 5 7.25 <b>X</b> 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140	80 73 98 91 83 99 82 80 66 63 73 86 80 86 80 86 90 90 90 90 90 90 90 90 88 90 90 90 90 88 90 88 80 88 90
LB144210.002 ['] olatile Petroleun Sample Numbe	VPH F Bands Surrogates VPH F Bands n Hydrocarbons in \ r	TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         TRH C6-C10 minus BTEX (F1)         TRH C6-C10         TRH C6-C10         TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         Vater         Parameter         TRH C6-C10         TRH C6-C10	mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg           mg/kg<	25 20 - - 25 25 20 - - - 25 25 20 - - - 25 25 20 - - - 25 25 20 - - - - 25 25 20 - - - - - - - - - - - - - - - - - -	<25 <20 4.9 4.6 4.2 5.0 <25 <25 <25 <20 3.6 4.3 4.0 4.3 <25 <b>Result</b> 930 760 4.3 4.4	24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 7.25 8 8 7.25 8 8 18.71 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140           60 - 140	80 73 98 91 83 99 82 80 66 73 86 80 86 90 90 90 90 90 90 90 98 93 85 87



Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311								I (Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE177041.030	LB144361.004	Mercury	mg/L	0.0001	0.0069	<0.0001	0.008	87

### Mercury in Soil

Mercury in Soil Method:							hod: ME-(AL	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE177041.001	LB144375.004	Mercury	mg/kg	0.05	0.22	<0.05	0.2	97
SE177041.020	LB144380.004	Mercury	mg/kg	0.05	0.23	<0.05	0.2	97

### **OC Pesticides in Soil**

OC Pesticides in			Devenuetor	11-14-	LOR	Decult			J)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units		Result	Original	Spike	Recovery%
SE177015.001	LB144195.027		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	122
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	124
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	122
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	0.2	<0.2	0.2	123
			Endrin	mg/kg	0.2	0.2	<0.2	0.2	119
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	99
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	_
			Mirex	mg/kg	0.1	<0.1	<0.1	-	_
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	_
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg		0.16	0.16	-	108
SE177041.015	LB144196.021	Carrogatoo	Hexachlorobenzene (HCB)	mg/kg	0.1	0.10	<0.1	_	-
02111041.010	20144100.021		Alpha BHC	mg/kg	0.1		<0.1	-	-
			Lindane	mg/kg	0.1		<0.1	-	
			Heptachlor		0.1		<0.1	0.2	- 89
			Aldrin	mg/kg	0.1			0.2	93
				mg/kg			<0.1		
			Beta BHC	mg/kg	0.1		<0.1	-	-
			Delta BHC	mg/kg	0.1		<0.1	0.2	84
			Heptachlor epoxide	mg/kg	0.1		<0.1	-	-
			o,p'-DDE	mg/kg	0.1		<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2		<0.2	-	-
			Gamma Chlordane	mg/kg	0.1		<0.1	-	-
			Alpha Chlordane	mg/kg	0.1		<0.1	-	-
			trans-Nonachlor	mg/kg	0.1		<0.1	-	-
			p,p'-DDE	mg/kg	0.1		<0.1	-	-
			Dieldrin	mg/kg	0.2		<0.2	0.2	94
			Endrin	mg/kg	0.2		<0.2	0.2	122
			o,p'-DDD	mg/kg	0.1		<0.1	-	-
			o,p'-DDT	mg/kg	0.1		<0.1	-	-
			Beta Endosulfan	mg/kg	0.2		<0.2	-	-
			p,p'-DDD	mg/kg	0.1		<0.1	-	-



Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

### OC Pesticides in Soil (continued) Method: ME-(AU)-[ENV]AN420 QC Sample Sample Number Parameter Units LOR Result Original Spike Recovery% SE177041.015 LB144196.021 p,p'-DDT mg/kg 0.1 <0.1 0.2 82 Endosulfan sulphate mg/kg 0.1 <0.1 Endrin Aldehyde 0.1 <0.1 mg/kg Methoxychlor mg/kg 0.1 < 0.1 Endrin Ketone 0.1 <0.1 mg/kg Isodrin 0.1 <0.1 mg/kg Mirex mg/kg 0.1 <0.1 -Total CLP OC Pesticides <1 mg/kg 1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) mg/kg 0.13 85 **OP Pesticides in Soil** Method: ME-(AU)-[ENV]AN420 LOR Spike Recovery% QC Sample Sample Number Parameter Units Result Original SE177015.004 LB144195.026 Dichlorvos mg/kg 0.5 1.7 <0.5 2 83 Dimethoate 0.5 <0.5 <0.5 mg/kg Diazinon (Dimpylate) mg/kg 0.5 1.7 <0.5 2 84 Fenitrothion mg/kg 0.2 <0.2 <0.2 Malathion 0.2 <0.2 <0.2 mg/kg Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 1.7 <0.2 2 86 0.2 <0.2 <0.2 Parathion-ethyl (Parathion) mg/kg Bromophos Ethyl 0.2 <0.2 <0.2 mg/kg Methidathion mg/kg 0.5 < 0.5 <0.5 Ethion mg/kg 0.2 1.6 <0.2 2 79 0.2 Azinphos-methyl (Guthion) <0.2 <0.2 mg/kg Total OP Pesticides* mg/kg 1.7 6.6 <1.7 0.5 0.5 98 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg d14-p-terphenyl (Surrogate) 0.5 0.5 104 mg/kg SE177041.015 LB144196.021 Dichlorvos mg/kg 0.5 < 0.5 2 77 Dimethoate mg/kg 0.5 <0.5 Diazinon (Dimpylate) <0.5 2 0.5 83 mg/kg Fenitrothion mg/kg 0.2 < 0.2 Malathion 0.2 <0.2 mg/kg Chlorpyrifos (Chlorpyrifos Ethyl) 0.2 <0.2 2 80 mg/kg Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Bromophos Ethyl mg/kg 0.2 <0.2 Methidathion <0.5 0.5 mg/kg Ethion mg/kg 0.2 < 0.2 2 77 Azinphos-methyl (Guthion) 0.2 <0.2 mg/kg Total OP Pesticides* 1.7 <1.7 mg/kg Surrogates 2-fluorobiphenyl (Surrogate) mg/kg 0.5 96 d14-p-terphenyl (Surrogate) 90 mg/kg 0.5 PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420 QC Sample Sample Number Parameter Units LOR Result Original Spike Recovery% SE177015.004 LB144195.026 Naphthalene 0.1 4.1 < 0.1 4 102 mg/kg 2-methylnaphthalene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 1-methylnaphthalene mg/kg 0.1 Acenaphthylene mg/kg 01 40 <0.1 4 100 99 Acenaphthene 0.1 3.9 <0.1 4 mg/kg <0.1 Fluorene <0.1 mg/kg 0.1 Phenanthrene 0.1 4.6 <0.1 4 116 mg/kg Anthracene 0.1 5.0 <0.1 4 124 mg/kg Fluoranthene 4.8 <0.1 4 119 mg/kg 0.1 Pyrene mg/kg 0.1 47 <0.1 4 118 Benzo(a)anthracene 0.1 <0.1 <0.1 mg/kg Chrysene 0.1 <0.1 <0.1 mg/kg Benzo(b&i)fluoranthene mg/kg 0.1 < 0.1 <0.1 Benzo(k)fluoranthene mg/kg 0.1 <0.1 <0.1 <0.1 0.1 4.8 4 121 Benzo(a)pyrene mg/kg Indeno(1,2,3-cd)pyrene mg/kg 0.1 < 0.1 < 0.1 _ -0.1 <0.1 <0.1 Dibenzo(ah)anthracene mg/kg <0.1 <0.1 Benzo(ghi)perylene 0.1 mg/kg Carcinogenic PAHs, BaP TEQ <LOR=0 TEQ (mg/kg) 0.2 4.8 <0.2



Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Sample	r Aromatic Hydrocarb Sample Number		Parameter	Units	LOR	Result		hod: ME-(AU Spike	
							Original		Recove
E177015.004	LB144195.026		Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>5.0</td><td>&lt;0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	5.0	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.9</td><td>&lt;0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.9	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	36	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	-	92
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	98
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	104
E177041.015	LB144196.021		Naphthalene	mg/kg	0.1		<0.1	4	101
			2-methylnaphthalene	mg/kg	0.1		<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1		<0.1	-	-
			Acenaphthylene	mg/kg	0.1		<0.1	4	107
			Acenaphthene	mg/kg	0.1		<0.1	4	100
			Fluorene	mg/kg	0.1		<0.1	-	-
			Phenanthrene	mg/kg	0.1		<0.1	4	99
			Anthracene	mg/kg	0.1		<0.1	4	108
			Fluoranthene	mg/kg	0.1		<0.1	4	105
			Pyrene	mg/kg	0.1		<0.1	4	99
			Benzo(a)anthracene	mg/kg	0.1		<0.1	-	-
			Chrysene	mg/kg	0.1		<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1		<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1		<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1		<0.1	4	123
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1		<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1		<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1		<0.1	-	_
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td></td><td>&lt;0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2		<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td></td><td>&lt;0.2</td><td>-</td><td>_</td></lor=lor<>	TEQ (mg/kg)	0.3		<0.2	-	_
					0.2		<0.2		
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td></td><td></td><td></td><td></td></lor=lor>	TEQ (mg/kg)	0.2				
			Total PAH (18)	mg/kg	0.0		<0.8	-	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-		0.5		92
			2-fluorobiphenyl (Surrogate)	mg/kg	-		0.5	-	96
			d14-p-terphenyl (Surrogate)	mg/kg	-		0.5	-	90
Bs in Soil							Met	hod: ME-(AU	)-[ENV]AI
C Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
177041.002	LB144195.027		Arochlor 1016	mg/kg	0.2	<0.2	-	-	1
			Arochlor 1221	mg/kg	0.2	<0.2	-	-	1
			Arochlor 1232	mg/kg	0.2	<0.2	-	-	1
			Arochlor 1242	mg/kg	0.2	<0.2	-	-	-
			Arochlor 1242	mg/kg	0.2	<0.2		-	-
			Arochlor 1254				-	-	-
				mg/kg	0.2	<0.2			-
			Arochlor 1260	mg/kg	0.2	<0.2	0.4	117	-
			Arochlor 1262	mg/kg	0.2	<0.2	-	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	-	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	-	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	-	107	-
177041.015	LB144196.021		Arochlor 1016	mg/kg	0.2	<0.2	-	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	-	-	_
			Arochlor 1232	mg/kg	0.2	<0.2	-	-	1
			Arochlor 1242	mg/kg	0.2	<0.2	-	-	4
			Arochlor 1248	mg/kg	0.2	<0.2	-	-	1
			Arochlor 1254	mg/kg	0.2	<0.2	-	-	
			Arochlor 1260	mg/kg	0.2	<0.2	0.4	114	
			Arochlor 1262	mg/kg	0.2	<0.2	-	-	]
				~ ~					-1
			Arochlor 1268	mg/kg	0.2	<0.2	-	-	
			Arochlor 1268	mg/kg			-	-	_
		Surrogates	Arochlor 1268 Total PCBs (Arochlors)	mg/kg	0.2	<1		-	_
	le Elements in Soil/₩a	Surrogates	Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)		1		-		



Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

### Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES (continued) Method: ME-(AU)-[ENV]AN040/AN320 QC Sample Sample Number Parameter Units LOR Result Original Spike Recovery% SE177041.001 LB144414.004 Arsenic, As mg/kg 3 50 10 50 82 Cadmium, Cd mg/kg 0.3 46 <0.3 50 93 Chromium, Cr 0.3 59 14 50 89 mg/kg Copper, Cu mg/kg 0.5 63 13 50 99 Nickel, Ni 0.5 46 1.5 50 90 mg/kg Lead, Pb 59 17 50 84 mg/kg 1 Zinc, Zn 0.5 50 91 mg/kg 61 15 SE177041.020 LB144415.004 Arsenic, As mg/kg 3 55 8 50 96 53 50 107 Cadmium, Cd 0.3 <0.3 mg/kg Chromium, Cr mg/kg 0.3 69 27 50 83 Copper, Cu mg/kg 0.5 88 29 50 117 Nickel, Ni 0.5 63 23 50 80 mg/kg Lead, Pb 43 50 142 ⑨ mg/kg 1 110 Zinc, Zn mg/kg 0.5 180 130 50 88 Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 QC Sample Sample Number LOR Original Spike Recovery% Parameter Units Result SE176947B.00 LB144357.004 Zinc. Zn µg/L 5 160 140 20 98

### TRH (Total Recoverable Hydrocarbons) in Soil

### Method: ME-(AU)-[ENV]AN403

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE177015.004	LB144195.027		TRH C10-C14	mg/kg	20	39	<20	40	98
			TRH C15-C28	mg/kg	45	<45	<45	40	85
			TRH C29-C36	mg/kg	45	<45	<45	40	93
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F Bands	TRH >C10-C16	mg/kg	25	38	<25	40	95
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	38	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	88
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
SE177041.015	LB144196.022		TRH C10-C14	mg/kg	20		<20	40	100
			TRH C15-C28	mg/kg	45		<45	40	90
			TRH C29-C36	mg/kg	45		<45	40	78
			TRH C37-C40	mg/kg	100		<100	-	-
			TRH C10-C36 Total	mg/kg	110		<110	-	-
			TRH C10-C40 Total (F bands)	mg/kg	210		<210	-	-
		TRH F Bands	TRH >C10-C16	mg/kg	25		<25	40	100
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25		<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90		<90	40	83
			TRH >C34-C40 (F4)	mg/kg	120		<120	-	-

VOC's in Soil

VOC 5 III 30II							INIOU	100. INIE-(AU	)-[EIAA]MAADD
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE177041.001	LB144209.004	Monocyclic	Benzene	mg/kg	0.1	1.9	<0.1	2.9	64
		Aromatic	Toluene	mg/kg	0.1	2.8	<0.1	2.9	97
			Ethylbenzene	mg/kg	0.1	1.9	<0.1	2.9	66
			m/p-xylene	mg/kg	0.2	4.0	<0.2	5.8	69
			o-xylene	mg/kg	0.1	1.8	<0.1	2.9	62
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.4	4.9	-	107
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	4.4	-	91
			d8-toluene (Surrogate)	mg/kg	-	3.5	3.9	-	70
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.5	3.9	-	91
		Totals	Total Xylenes	mg/kg	0.3	5.8	<0.3	-	-
			Total BTEX	mg/kg	0.6	12	<0.6	-	-
VOCs in Water							Meth	od: ME-(AU	)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR				



Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

### VOCs in Water (continued) Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number <u>ke</u> Recovery% Parameter Units LOR Original Spil LB144312.025 SE177107.006 Monocyclic Benzene μg/L 0.5 0.03 45.45 108 Toluene Aromatic µg/L 0.5 0.04 45.45 116 0.02 45.45 129 Ethylbenzene 0.5 µg/L m/p-xylene µg/L 1 0.02 90.9 111 0.5 0.01 45.45 122 o-xylene µg/L Polycyclic Naphthalene 0.5 0.01 µg/L Dibromofluoromethane (Surrogate) 125 Surrogates µg/L 5.9 d4-1,2-dichloroethane (Surrogate) µg/L 5.21 110 -70 d8-toluene (Surrogate) µg/L 5.06 Bromofluorobenzene (Surrogate) µg/L 5.01 114 Method: ME-(AU)-[ENV]AN433 Volatile Petroleum Hydrocarbons in Soil Spike Recovery% QC Sample Sample Number Result Parameter Units Original SE177009.001 LB144210.004 TRH C6-C10 25 <25 24.65 81 0 mg/kg TRH C6-C9 mg/kg 20 <20 0 23.2 79 Surrogates Dibromofluoromethane (Surrogate) mg/kg 3.6 3.53 72 d4-1,2-dichloroethane (Surrogate) 4.2 84 4.17 mg/kg d8-toluene (Surrogate) mg/kg 3.9 4 78 -Bromofluorobenzene (Surrogate) 4.6 4.32 92 mg/kg VPH F Benzene (F0) 0.1 2.0 0.04 mg/kg Bands TRH C6-C10 minus BTEX (F1) mg/kg 25 <25 -0.09 7.25 92 SE177041.001 LB144209.004 TRH C6-C10 mg/kg 25 <25 <25 24.65 72 TRH C6-C9 <20 23.2 72 20 <20 mg/kg Surrogates Dibromofluoromethane (Surrogate) mg/kg 5.4 4.9 107 d4-1,2-dichloroethane (Surrogate) 4.6 4.4 91 mg/kg d8-toluene (Surrogate) 3.5 3.9 70 mg/kg --Bromofluorobenzene (Surrogate) mg/kg 4.5 3.9 91 VPH F Benzene (F0) mg/kg 0.1 1.9 <0.1 TRH C6-C10 minus BTEX (F1) 7.25 73 <25 Bands 25 <25 mg/kg Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Recovery% QC Sample Sample Number LOR Result Spike Parameter Units Original SE177107.006 LB144312.025 TRH C6-C10 50 870 0 946.63 91 µg/L TRH C6-C9 40 818.71 µg/L 740 0 90 Surrogates Dibromofluoromethane (Surrogate) µg/L 0.0 5.9 125 d4-1,2-dichloroethane (Surrogate) 0.0 5.21 110 µg/L d8-toluene (Surrogate) 0.0 5.06 70 µg/L Bromofluorobenzene (Surrogate) µg/L 0.0 5.01 114 -VPH F 0.5 49 0.03 Benzene (F0) µg/L TRH C6-C10 minus BTEX (F1) -0.12 639.67 86 50 550 Bands µg/L



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.



## STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Nicholas Grbich	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	nicholas.grbich@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23775 33 Brighton Ave, Croydon Park Add	SGS Reference	SE177041A R0
Order Number	E23775	Date Received	16 Apr 2018
Samples	33	Date Reported	17 Apr 2018

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested

Yes SGS Yes 16/4/18@11:02am Yes 4.1°C Next Day

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis

Yes Ice Bricks 1 Water Fmail Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Australia Alexandria NSW 2015 Australia

t +61 2 8594 0400

www.sgs.com.au f +61 2 8594 0499

Member of the SGS Group



## HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN3										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
QRB1	SE177041A.033	LB145819	20 Mar 2018	16 Apr 2018	17 Apr 2018	17 Apr 2018	17 Apr 2018	17 Apr 2018		
Trace Metals (Dissolved)	in Water by ICPMS						Method:	ME-(AU)-[ENV]AN31		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
QRB1	SE177041A.033	LB145728	20 Mar 2018	16 Apr 2018	16 Sep 2018	16 Apr 2018	16 Sep 2018	16 Apr 2018		



### **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.



## **METHOD BLANKS**

## SE177041A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)	-[ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB145819.001	Mercury	mg/L	0.0001	<0.0001

### Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dissolved) in Water by ICF	Trace Metals (Dissolved) in Water by ICPMS			
Sample Number	Parameter	Units	LOR	Result
LB145728.001	Arsenic, As	μg/L μα/λ	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	μg/L	5	<5



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved)	) in Water				Metho	d: ME-(AU)-[	ENVJAN311(F	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE177774.001	LB145819.014	Mercury	µg/L	0.0001	-0.0098	-0.0008	200	0



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Trace Metals (Dissolved) in Water by ICPMS							Method: ME-(AU)-[ENV]AN318		
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %		
LB145728.002	Arsenic, As	μg/L	1	19	20	80 - 120	96		
	Cadmium, Cd	μg/L	0.1	21	20	80 - 120	106		
	Chromium, Cr	μg/L	1	22	20	80 - 120	108		
	Copper, Cu	μg/L	1	22	20	80 - 120	112		
	Lead, Pb	μg/L	1	21	20	80 - 120	106		
	Nickel, Ni	μg/L	1	22	20	80 - 120	108		
	Zinc, Zn	µg/L	5	21	20	80 - 120	105		



Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	ed) in Water				Met	thod: ME-(AU)-	[ENV]AN31 [,]	I (Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE177922.001	LB145819.004	Mercury	mg/L	0.0001	0.0064	-0.0018	0.008	81

Trace Metals (Dis	Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN31							J)-[ENV]AN318
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE177041A.03	LB145728.004	Arsenic, As	µg/L	1	19	<1	20	97
3		Cadmium, Cd	μg/L	0.1	21	<0.1	20	106
		Chromium, Cr	μg/L	1	23	1	20	109
		Copper, Cu	μg/L	1	22	<1	20	112
		Lead, Pb	μg/L	1	23	<1	20	108
		Nickel, Ni	μg/L	1	22	<1	20	110
		Zinc, Zn	µg/L	5	22	<5	20	110



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.



## STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Benjamin Aggar	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	benjamin.aggar@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23775 33 Brighton Ave, Croydon Park NSW	SGS Reference	SE177844 R0
Order Number	E23775	Date Received	11 Apr 2018
Samples	9	Date Reported	16 Apr 2018

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

Samples clearly labelled Yes Complete documentation received Yes Ice Bricks Sample container provider SGS Sample cooling method Samples received in correct containers 9 Water Yes Sample counts by matrix 11/4/2018 COC Date documentation received Type of documentation received Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 5.3°C Sufficient sample for analysis Yes Turnaround time requested Two Days

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

NSW 2015 Australia NSW 2015 Australia

t +61 2 8594 0400 f +61 2 8594 0499

0400 www.sgs.com.au 0499 Member of the SGS Group



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Water							Method: ME-(AU)-[ENV	AN311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE177844.001	LB145535	10 Apr 2018	11 Apr 2018	08 May 2018	13 Apr 2018	08 May 2018	13 Apr 2018
BH4M-1	SE177844.002	LB145535	10 Apr 2018	11 Apr 2018	08 May 2018	13 Apr 2018	08 May 2018	13 Apr 2018
BH7M-1	SE177844.003	LB145535	10 Apr 2018	11 Apr 2018	08 May 2018	13 Apr 2018	08 May 2018	13 Apr 2018
BH10M-1	SE177844.004	LB145535	10 Apr 2018	11 Apr 2018	08 May 2018	13 Apr 2018	08 May 2018	13 Apr 2018
BH13M-1	SE177844.005	LB145535	10 Apr 2018	11 Apr 2018	08 May 2018	13 Apr 2018	08 May 2018	13 Apr 2018
GWQD1	SE177844.006	LB145535	10 Apr 2018	11 Apr 2018	08 May 2018	13 Apr 2018	08 May 2018	13 Apr 2018
GWQR1	SE177844.007	LB145535	10 Apr 2018	11 Apr 2018	08 May 2018	13 Apr 2018	08 May 2018	13 Apr 2018
PAH (Polynuclear Aromatic Hyd	rocarbons) in Water						Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE177844.001	LB145572	10 Apr 2018	11 Apr 2018	17 Apr 2018	13 Apr 2018	23 May 2018	16 Apr 2018
BH4M-1	SE177844.002	LB145572	10 Apr 2018	11 Apr 2018	17 Apr 2018	13 Apr 2018	23 May 2018	16 Apr 2018
BH7M-1	SE177844.003	LB145572	10 Apr 2018	11 Apr 2018	17 Apr 2018	13 Apr 2018	23 May 2018	16 Apr 2018
BH10M-1	SE177844.004	LB145572	10 Apr 2018	11 Apr 2018	17 Apr 2018	13 Apr 2018	23 May 2018	16 Apr 2018
BH13M-1	SE177844.005	LB145572	10 Apr 2018	11 Apr 2018	17 Apr 2018	13 Apr 2018	23 May 2018	16 Apr 2018
GWQD1	SE177844.006	LB145572	10 Apr 2018	11 Apr 2018	17 Apr 2018	13 Apr 2018	23 May 2018	16 Apr 2018
GWQR1	SE177844.007	LB145572	10 Apr 2018	11 Apr 2018	17 Apr 2018	13 Apr 2018	23 May 2018	16 Apr 2018
Total Phenolics in Water							Method: I	ME-(AU)-[ENV]AN289
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE177844.001	LB145516	10 Apr 2018	11 Apr 2018	08 May 2018	12 Apr 2018	08 May 2018	13 Apr 2018
BH4M-1	SE177844.002	LB145516	10 Apr 2018	11 Apr 2018	08 May 2018	12 Apr 2018	08 May 2018	13 Apr 2018
BH7M-1	SE177844.003	LB145516	10 Apr 2018	11 Apr 2018	08 May 2018	12 Apr 2018	08 May 2018	13 Apr 2018
BH10M-1	SE177844.004	LB145516	10 Apr 2018	11 Apr 2018	08 May 2018	12 Apr 2018	08 May 2018	13 Apr 2018
BH13M-1	SE177844.005	LB145516	10 Apr 2018	11 Apr 2018	08 May 2018	12 Apr 2018	08 May 2018	13 Apr 2018
Trace Metals (Dissolved) in Wat	er by ICPMS						Method: I	ME-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE177844.001	LB145525	10 Apr 2018	11 Apr 2018	07 Oct 2018	13 Apr 2018	07 Oct 2018	16 Apr 2018
BH4M-1	SE177844.002	LB145525	10 Apr 2018	11 Apr 2018	07 Oct 2018	13 Apr 2018	07 Oct 2018	16 Apr 2018
BH7M-1	SE177844.003	LB145525	10 Apr 2018	11 Apr 2018	07 Oct 2018	13 Apr 2018	07 Oct 2018	16 Apr 2018
BH10M-1	SE177844.004	LB145525	10 Apr 2018	11 Apr 2018	07 Oct 2018	13 Apr 2018	07 Oct 2018	16 Apr 2018
BH13M-1	SE177844.005	LB145525	10 Apr 2018	11 Apr 2018	07 Oct 2018	13 Apr 2018	07 Oct 2018	16 Apr 2018
GWQD1	SE177844.006	LB145525	10 Apr 2018	11 Apr 2018	07 Oct 2018	13 Apr 2018	07 Oct 2018	16 Apr 2018
GWQR1	SE177844.007	LB145525	10 Apr 2018	11 Apr 2018	07 Oct 2018	13 Apr 2018	07 Oct 2018	16 Apr 2018
TRH (Total Recoverable Hydroc	arbons) in Water							ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE177844.001	LB145572	10 Apr 2018	11 Apr 2018	17 Apr 2018	13 Apr 2018	23 May 2018	16 Apr 2018
BH4M-1	SE177844.002	LB145572	10 Apr 2018	11 Apr 2018	17 Apr 2018	13 Apr 2018	23 May 2018	16 Apr 2018
BH7M-1	SE177844.003	LB145572	10 Apr 2018	11 Apr 2018	17 Apr 2018	13 Apr 2018	23 May 2018	16 Apr 2018
BH10M-1	SE177844.004	LB145572	10 Apr 2018	11 Apr 2018	17 Apr 2018	13 Apr 2018	23 May 2018	16 Apr 2018
BH13M-1	SE177844.005	LB145572	10 Apr 2018	11 Apr 2018	17 Apr 2018	13 Apr 2018	23 May 2018	16 Apr 2018
GWQD1	SE177844.006	LB145572	10 Apr 2018	11 Apr 2018	17 Apr 2018	13 Apr 2018	23 May 2018	16 Apr 2018
GWQR1	SE177844.007	LB145572	10 Apr 2018	11 Apr 2018	17 Apr 2018	13 Apr 2018	23 May 2018	16 Apr 2018
VOCs in Water								ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE177844.001	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
BH4M-1	SE177844.002	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
BH7M-1	SE177844.003	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
BH10M-1	SE177844.004	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
BH13M-1	SE177844.005	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
GWQD1	SE177844.006	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
GWQR1	SE177844.007	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
GWQTB1	SE177844.008	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
GWQTS1	SE177844.009	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
Volatile Petroleum Hydrocarbons Sample Name	s in Water Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	ME-(AU)-[ENV]AN433 Analysed
BH1M-1	SE177844.001	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
BH4M-1	SE177844.001	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
BH7M-1	SE177844.003	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
	52	20110014	101.012010		11 7 61 2010	1279.2010	22 may 2010	107.012010



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocarbons in Water (continued)								ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH10M-1	SE177844.004	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
BH13M-1	SE177844.005	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
GWQD1	SE177844.006	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
GWQR1	SE177844.007	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
GWQTB1	SE177844.008	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018
GWQTS1	SE177844.009	LB145514	10 Apr 2018	11 Apr 2018	17 Apr 2018	12 Apr 2018	22 May 2018	13 Apr 2018



### **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

### PAH (Polynuclear Aromatic Hydrocarbons) in Water

### Method: ME-(AU)-[ENV]AN420

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1M-1	SE177844.001	%	40 - 130%	44
	BH4M-1	SE177844.002	%	40 - 130%	48
	BH7M-1	SE177844.003	%	40 - 130%	44
	BH10M-1	SE177844.004	%	40 - 130%	44
	BH13M-1	SE177844.005	%	40 - 130%	48
d14-p-terphenyl (Surrogate)	BH1M-1	SE177844.001	%	40 - 130%	64
	BH4M-1	SE177844.002	%	40 - 130%	56
	BH7M-1	SE177844.003	%	40 - 130%	62
	BH10M-1	SE177844.004	%	40 - 130%	66
	BH13M-1	SE177844.005	%	40 - 130%	58
d5-nitrobenzene (Surrogate)	BH1M-1	SE177844.001	%	40 - 130%	44
	BH4M-1	SE177844.002	%	40 - 130%	44
	BH7M-1	SE177844.003	%	40 - 130%	42
	BH10M-1	SE177844.004	%	40 - 130%	44
	BH13M-1	SE177844.005	%	40 - 130%	46

### VOCs in Water

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M-1	SE177844.001	%	40 - 130%	102
	BH4M-1	SE177844.002	%	40 - 130%	111
	BH7M-1	SE177844.003	%	40 - 130%	107
	BH10M-1	SE177844.004	%	40 - 130%	105
	BH13M-1	SE177844.005	%	40 - 130%	129
	GWQD1	SE177844.006	%	40 - 130%	81
	GWQR1	SE177844.007	%	40 - 130%	78
	GWQTB1	SE177844.008	%	40 - 130%	79
	GWQTS1	SE177844.009	%	40 - 130%	105
d4-1,2-dichloroethane (Surrogate)	BH1M-1	SE177844.001	%	40 - 130%	97
	BH4M-1	SE177844.002	%	40 - 130%	81
	BH7M-1	SE177844.003	%	40 - 130%	112
	BH10M-1	SE177844.004	%	40 - 130%	105
	BH13M-1	SE177844.005	%	40 - 130%	107
	GWQD1	SE177844.006	%	40 - 130%	115
	GWQR1	SE177844.007	%	40 - 130%	105
	GWQTB1	SE177844.008	%	40 - 130%	101
	GWQTS1	SE177844.009	%	40 - 130%	90
d8-toluene (Surrogate)	BH1M-1	SE177844.001	%	40 - 130%	91
	BH4M-1	SE177844.002	%	40 - 130%	107
	BH7M-1	SE177844.003	%	40 - 130%	92
	BH10M-1	SE177844.004	%	40 - 130%	93
	BH13M-1	SE177844.005	%	40 - 130%	105
	GWQD1	SE177844.006	%	40 - 130%	85
	GWQR1	SE177844.007	%	40 - 130%	112
	GWQTB1	SE177844.008	%	40 - 130%	115
	GWQTS1	SE177844.009	%	40 - 130%	106
Dibromofluoromethane (Surrogate)	BH1M-1	SE177844.001	%	40 - 130%	89
	BH4M-1	SE177844.002	%	40 - 130%	77
	BH7M-1	SE177844.003	%	40 - 130%	106
	BH10M-1	SE177844.004	%	40 - 130%	96
	BH13M-1	SE177844.005	%	40 - 130%	107
	GWQD1	SE177844.006	%	40 - 130%	114
	GWQR1	SE177844.007	%	40 - 130%	102
	GWQTB1	SE177844.008	%	40 - 130%	99
	GWQTS1	SE177844.009	%	40 - 130%	89
Volatile Petroleum Hydrocarbons in Water				Method: ME	-(AU)-[ENV]AN433
Poromotor	Somple Name	Sampla Number	Unito	Critorio	Booovory %

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M-1	SE177844.001	%	40 - 130%	78
	BH4M-1	SE177844.002	%	40 - 130%	80
	BH7M-1	SE177844.003	%	40 - 130%	87
	BH10M-1	SE177844.004	%	40 - 130%	75
	BH13M-1	SE177844.005	%	40 - 130%	77



### **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Water (continued)				Method: M	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	GWQD1	SE177844.006	%	40 - 130%	81
	GWQR1	SE177844.007	%	40 - 130%	78
d4-1,2-dichloroethane (Surrogate)	BH1M-1	SE177844.001	%	60 - 130%	97
	BH4M-1	SE177844.002	%	60 - 130%	82
	BH7M-1	SE177844.003	%	60 - 130%	113
	BH10M-1	SE177844.004	%	60 - 130%	105
	BH13M-1	SE177844.005	%	60 - 130%	107
	GWQD1	SE177844.006	%	60 - 130%	115
	GWQR1	SE177844.007	%	60 - 130%	105
d8-toluene (Surrogate)	BH1M-1	SE177844.001	%	40 - 130%	76
	BH4M-1	SE177844.002	%	40 - 130%	70
	BH7M-1	SE177844.003	%	40 - 130%	81
	BH10M-1	SE177844.004	%	40 - 130%	87
	BH13M-1	SE177844.005	%	40 - 130%	83
	GWQD1	SE177844.006	%	40 - 130%	85
	GWQR1	SE177844.007	%	40 - 130%	112
Dibromofluoromethane (Surrogate)	BH1M-1	SE177844.001	%	40 - 130%	86
	BH4M-1	SE177844.002	%	40 - 130%	75
	BH7M-1	SE177844.003	%	40 - 130%	103
	BH10M-1	SE177844.004	%	40 - 130%	94
	BH13M-1	SE177844.005	%	40 - 130%	103
	GWQD1	SE177844.006	%	40 - 130%	114
	GWQR1	SE177844.007	%	40 - 130%	102



## **METHOD BLANKS**

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(Al	J)-[ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB145535.001	Mercury	mg/L	0.0001	<0.0001

### PAH (Polynuclear Aromatic Hydrocarbons) in Water

PAH (Polynuclear Aromati	c Hydrocarbons) in Wa	ter		Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB145572.001		Naphthalene	µg/L	0.1	<0.1
		2-methylnaphthalene	μg/L	0.1	<0.1
		1-methylnaphthalene	μg/L	0.1	<0.1
		Acenaphthylene	μg/L	0.1	<0.1
		Acenaphthene	μg/L	0.1	<0.1
		Fluorene	μg/L	0.1	<0.1
		Phenanthrene	μg/L	0.1	<0.1
		Anthracene	μg/L	0.1	<0.1
		Fluoranthene	µg/L	0.1	<0.1
		Pyrene	µg/L	0.1	<0.1
		Benzo(a)anthracene	µg/L	0.1	<0.1
		Chrysene	μg/L	0.1	<0.1
		Benzo(a)pyrene	μg/L	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
		Dibenzo(ah)anthracene	μg/L	0.1	<0.1
		Benzo(ghi)perylene	μg/L	0.1	<0.1
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	60
		2-fluorobiphenyl (Surrogate)	%	-	68
		d14-p-terphenyl (Surrogate)	%	-	72
otal Phenolics in Water				Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB145516.001		Total Phenols	mg/L	0.01	<0.01

Sample Number	Parameter	Units	LOR	Result
B145525.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	µg/L	5	<5

Sample Number	Parameter	Units	LOR	Result
LB145572.001	TRH C10-C14	μg/L	50	<50
	TRH C15-C28	μg/L	200	<200
	TRH C29-C36	μg/L	200	<200
	TRH C37-C40	μg/L	200	<200

VOCs in Water				Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB145514.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5
		1,2-dichloropropane	μg/L	0.5	<0.5
		cis-1,3-dichloropropene	μg/L	0.5	<0.5
		trans-1,3-dichloropropene	μg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	μg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	µg/L	5	<5
		Chloromethane	µg/L	5	<5
		Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3
		Bromomethane	µg/L	10	<10
		Chloroethane	µg/L	5	<5
		Trichlorofluoromethane	μg/L	1	<1
		lodomethane	µg/L	5	<5



## **METHOD BLANKS**

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Biological Number         Point of Parameter           Number of Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parameter         Parame	VOCs in Water (continu	ied)			Meth	od: ME-(AU)-[ENV]AN433
Higherson Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partial Partin Partin Partin Partial Partial Partial Partial Partial Partial	Sample Number		Parameter	Units	LOR	Result
Index and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second		Halogenated Aliphatics			0.5	
Modeling for the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec		·····g······				
pirs1.2 ablongencepirs1.2 ablongencepirs						
Networksources of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the seco						
<ul> <li> <ul> <li></li></ul></li></ul>						
Image and particularImage and particular						
13.differentiation         0,0         0,5         0,6           11.4.differentiation         0,0         0,5         0,6           14.0.differentiation         0,0         0,5         0,6           Construction         0,0         0,5         0,6           Determiniation         0,0         0,5         0,6           11.0.differentiation         0,0         0,5         0,6           11.0.differentiation         0,0         0,5         0,6           11.0.differentiation         0,0         0,0         0,0         0,0           0           11.0.differentiation         0,0         0,0         0,0         0,0         0,0         0,0         0,0         0,0         0,0         0,0         0,0         0,0         0,0         0,0         0,0         0,0         0,0         0,0         0,0         0,0         0,0					· · · ·	
<ul> <li>1.1.4 eleinovation</li> <li>1.1.4 eleinovation</li> <li>0.1.</li> <li>0.1.4 eleinovation</li> <li< td=""><td></td><td></td><td></td><td></td><td></td><td></td></li<></ul>						
1.4dirionsprese     90     93     95       1.12 extensions     90     95     95       1.12 extensions     90     95     95       1.2 extension						
Interfact (Content)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P)(P) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Interpretational productional			1,1-dichloropropene	μg/L	0.5	
Indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of the indication of			Carbon tetrachloride	μg/L	0.5	<0.5
1.1 Archivestman     jpl.     0.2     0.4       Techsorent Perdorountplein PC     jpl.     0.2     0.5       1.1 Address Dama     jpl.     0.2     0.5       1.1 Address Dama     jpl.     0.2     0.5       1.2 Address Dama     jpl.     0.2     0.5       1.2 Address Dama     jpl.     0.2     0.5       1.2 Address Dama     jpl.     0.2     0.5       1.2 Address Dama     jpl.     0.2     0.5       1.2 Address Dama     jpl.     0.2     0.5       1.2 Address Dama     jpl.     0.2     0.5       1.2 Address Dama     jpl.     0.2     0.5       1.2 Address Dama     jpl.     0.2     0.5       1.2 Address Dama     jpl.     0.2     0.5       1.2 Address Dama     jpl.     0.2     0.5       1.2 Address Dama     jpl.     0.5     0.5			Dibromomethane	μg/L	0.5	<0.5
1-3-delagrogame         µI         0.5         0.5           11.12-leadingstryme PCI         µI         0.5         0.5           11.2-bestingstryme PCI         µI         0.5         0.5           11.2-bestingstryme PCI         µI         0.5         0.5           11.2-bestingstryme PCI         µI         0.5         0.5           12.2-bestingstryme PCI         µI         0.5         0.5           14.3-bestingstryme PCI         µI         0.5         0.5           14.5-bestingstryme PCI         µI         0.5         0.5			Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5
Fractionarian (Mathematic)         01         0.5         0.5           0.1.1.248000000000000000000000000000000000000			1,1,2-trichloroethane	μg/L	0.5	<0.5
11.1.2.84m310mm1me         ppl         0.5         0.5           1.2.2.94m310mm1me         ppl         0.5         0.5           1.2.2.94m310mm1me         ppl         0.5         0.5           1.2.2.94m310mm1me         ppl         0.5         0.5           1.2.2.94m310mm1me         ppl         0.5         0.5           1.2.84m310mm1me         ppl         0.5         0.5           1.3.84m310mm1me         ppl         0.5         0.5           1.4.84m310mm1me         ppl         0.5         0.5           1.4.84m310mm1me         ppl         0.5         0.5           1.4.84m310mm1me         ppl         0.5         0.5           1.3.64m310mm1me         ppl         0.5			1,3-dichloropropane	μg/L	0.5	<0.5
11.12.bitsOriostino     9L     0.5     0.5       12.2.bitsOriostino     9L     0.5     0.5       12.2.bitsOriostino     9L     0.5     0.5       12.3.bitsOriostino     9L     0.5     0.5       12.3.bitsOriostino     9L     0.5     0.5       12.3.bitsOriostino     9L     0.5     0.5       13.5.bitsOriostino     9L     0.5     0.5       14.5.bitsOriostino     9L     0.5     0.5       12.4.bitsOriostino     9L     0.5     0.5			Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5
is.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buteneis.1.4.chinors.buten					0.5	<0.5
11.2.2 starbingsorgene10.2.2 starbing						
1.2.1ergenome1.2.1ergenome1.0.11.41.2.decomporter0.10.10.11.2.decomporter0.10.10.11.2.decomporter0.10.10.11.2.decomporter0.10.10.11.2.decomporter0.10.10.11.2.decomporter0.10.10.11.2.decomporter0.10.10.11.2.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter0.10.10.11.3.decomporter <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
tani-4.didon-2-cluine         pil.         1         -1           12-derions-3-disoprogene         pil.         0.5         -0.5           Heacebrouldeire         pil.         0.5         -0.5           Bionobeizzare         pil.         0.5         -0.5           2-dirotos-1-disoberaze         pil.         0.5         -0.5           2-dirotos-1-disoberaze         pil.         0.5         -0.5           2-dirotos-1-disoberaze         pil.         0.5         -0.5           1.3-dirotos-1-disoberaze         pil.         0.5         -0.5           1.3-dirotos-1-disoberaze <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
1.2-ditroscoprogeneppL0.50.5Haiogenoted AromaticsPictocharcianeppL0.50.5Haiogenoted Aromatics2-colinotocineppL0.50.52-colinotocineppL0.50.50.54-chilotocineppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-ditricobenzaneppL0.50.50.51-3-di						
HeadbookdadiemUp10.50.5Halogenated AronatorUp10.50.5BronchenzeneUp10.50.52-diotatilameUp10.50.52-diotatilameUp10.50.51.3-delatobenzeneUp10.50.51.3-delatobenzeneUp10.50.51.3-delatobenzeneUp10.50.51.2-delatobenzeneUp10.50.51.2-delatobenzeneUp10.50.51.2-delatobenzeneUp10.50.51.2-delatobenzeneUp10.50.51.2-delatobenzeneUp10.50.51.2-delatobenzeneUp10.50.51.2-delatobenzeneUp10.50.51.2-delatobenzeneUp10.50.51.2-delatobenzeneUp10.50.51.2-delatobenzeneUp10.50.51.2-delatobenzeneUp10.50.51.2-delatobenzeneUp10.50.5BrighenseneUp10.50.5BrighenseneUp10.50.5IsographenzeneUp10.50.5IsographenzeneUp10.50.5IsographenzeneUp10.50.5IsographenzeneUp10.50.5IsographenzeneUp10.50.5IsographenzeneUp10.50.5IsographenzeneUp10.50.5Isographenzene <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Happendia Aronating Bergeneration (Section (Se						
Bornolezone         pgl         0.5         <0.5					· · · ·	
Pichotolume         pp1         0.6         <0.5		Halogenated Aromatics			· · · ·	
4-Adritolosenzene         pgL         0.6         <0.5					· · · ·	
1.3-definodenzene     µp1     0.5     <0.5				μg/L		
1.4-dicklarcbenzene         µgl.         0.3         <0.3			4-chlorotoluene	μg/L	0.5	<0.5
12.4deblooberacepgl0.5<0.512.4deblooberacepgl0.5<0.5			1,3-dichlorobenzene	μg/L	0.5	<0.5
1.2.4-trichtoroberzenepgl0.5<0.5Monocyclia AramatioBenepgl0.5<0.5			1,4-dichlorobenzene	μg/L	0.3	<0.3
InductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInductionInduction			1,2-dichlorobenzene	µg/L	0.5	<0.5
Monocycik Aromatic HydrocarborsBerzenegg/L0.5<0.5Hydrocarbors10Len10L<0.5			1,2,4-trichlorobenzene	μg/L	0.5	<0.5
HydrocarbonsJoleneJugl0.5<0.5Ethylencanejugl0.5<0.5			1,2,3-trichlorobenzene	μg/L	0.5	<0.5
HydrocarbonsJoleneJugl0.5<0.5Ethylencanejugl0.5<0.5		Monocyclic Aromatic	Benzene		0.5	<0.5
Ethybanzene         µgl.         0.5         <0.5			Toluene		0.5	<0.5
mp/sylenemp/sylenemp/sylenemp/sylenemp/sylene-xylenepp/spl0.5<0.5						
by specific programmentpgl0.5<0.5						
Styrene (Vinyl benzene)         µgL         0.5         <0.5					· · · · · · · · · · · · · · · · · · ·	
Isoprop/Benzene (Cumene)         pg/L         0.5         <0.5						
n-propybenzene         µg/L         0.5         <0.5						
Image: strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain strain						
Inter-butylbenzene         µg/L         0.5         <0.5						
1.2.4 trimethylbenzene         µg/L         0.5         <0.5			· · · · · · · · · · · · · · · · · · ·		· · ·	
sec-butylbenzene         µg/L         0.5         <0.5						
p-isopropyllolueneµg/L0.5<0.5n-butylbenzeneµg/L0.5<0.5				μg/L		
In-butylbenzene         µg/L         0.5         <0.5           Nitrogenous Compounds         Acrylonitrile         µg/L         0.5         <0.5			sec-butylbenzene	μg/L	0.5	
Nitrogenous CompoundsActylonitrileµg/L0.5<0.5Oxygenated CompoundsAcetone (2-propanone)µg/L10<10			p-isopropyltoluene	μg/L	0.5	<0.5
Oxygenated CompoundsAcetone (2-propanone)µg/L10<10MtBE (Methyl-tert-butyl ether)µg/L2<2			n-butylbenzene	μg/L	0.5	<0.5
MtBE (Methyl-tert-butyl ether)μg/L2<2Vinyl acetateμg/L10<10		Nitrogenous Compounds	Acrylonitrile	μg/L	0.5	<0.5
MtBE (Methyl-tert-butyl ether)µg/L2<2Vinyl acetateµg/L10<10		Oxygenated Compounds	Acetone (2-propanone)	μg/L	10	<10
Vinyl acetateμg/L10<10MEK (2-butanone)μg/L10<10			MtBE (Methyl-tert-butyl ether)		2	<2
MEK (2-butanone)μg/L10<10MIBK (4-methyl-2-pentanone)μg/L5<5					10	
MIBK (4-methyl-2-pentanone)μg/L5<52-hexanone (MBK)μg/L5<5						
2-hexanone (MBK)μg/L5<5Polycyclic VOCsNaphthaleneμg/L0.5<0.5						
Polycyclic VOCsNaphthaleneμg/L0.5<0.5SulphonatedCarbon disulfideμg/L2<2						
SulphonatedCarbon disulfideμg/L2<2SurrogatesDibronofluoromethane (Surrogate)%-85d4-1,2-dichloroethane (Surrogate)%-96d8-toluene (Surrogate)%-119Bronofluorobenzene (Surrogate)%-116TrihalomethanesChloroform (THM)μg/L0.5<0.5						
SurrogatesDibromofluoromethane (Surrogate)%-85d4-1,2-dichloroethane (Surrogate)%-96d8-toluene (Surrogate)%-119Bromofluorobenzene (Surrogate)%-116TrihalomethanesChloroform (THM)µg/L0.5<0.5						
d4-1,2-dichloroethane (Surrogate)         %         -         96           d8-toluene (Surrogate)         %         -         119           Bromofluorobenzene (Surrogate)         %         -         116           Trihalomethanes         Chloroform (THM)         µg/L         0.5         <0.5						
d8-toluene (Surrogate)         %         -         119           Bromofluorobenzene (Surrogate)         %         -         116           Trihalomethanes         Chloroform (THM)         µg/L         0.5         <0.5		Surrogates				
Bromofluorobenzene (Surrogate)         %         -         116           Trihalomethanes         Chloroform (THM)         µg/L         0.5         <0.5						
Trihalomethanes Chloroform (THM) µg/L 0.5 <0.5						
Bromodichloromethane (THM) µg/L 0.5 <0.5		Trihalomethanes		µg/L		
			Bromodichloromethane (THM)	µg/L	0.5	<0.5



VOCs in Water (continued)

## **METHOD BLANKS**

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB145514.001	Trihalomethanes	Dibromochloromethane (THM)	μg/L	0.5	<0.5
		Bromoform (THM)	μg/L	0.5	<0.5
Volatile Petroleum Hyd	drocarbons in Water			Metho	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB145514.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	85
		d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	119
		Bromofluorobenzene (Surrogate)	%	-	116



Method: ME-(AU)-IENVIAN289

Method: ME-(AU)-[ENV]AN318

0

0

8

3

7

2

1

0

0

0

0

0

0

0

184

130

96

17

39

16

17

200

200

200

200

200

200

23

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved)	in Water				Metho	d: ME-(AU)-[	ENVJAN311(P	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE177844.007	LB145535.011	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0

### Total Phenolics in Water

Trace Metals (Dissolved) in Water by ICPMS

Original         Duplicate         Parameter         Units         LOR         Original         Duplicate         Criteria %         F           SE177354.026         LB145516.004         Total Phenols         mg/L         0.01         -0.00365         -0.0045         200									
	Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
·				mg/L			-0.0045	200	0

### Original Duplicate LOR Original Duplicate Criteria % RPD % Parameter Units SE177844.002 LB145525.014 <1 <1 Arsenic, As µg/L 1 Cadmium, Cd 0.1 <0.1 <0.1 µg/L Chromium, Cr µg/L 1 1 1 Copper, Cu µg/L 60 61 1 Lead, Pb 4 4 µg/L 1 Nickel, Ni 75 µg/L 1 73 Zinc, Zn µg/L 5 280 290 SE177844.007 LB145525.020 <1 <1 Arsenic, As µg/L 1 Cadmium. Cd µg/L 0.1 < 0.1 <0.1 Chromium, Cr µg/L <1 <1 1 Copper, Cu <1 <1 µg/L 1 Lead, Pb µg/L 1 <1 <1 Nickel, Ni µg/L <1 <1 1 64 Zinc, Zn 63 µg/L 5 Methods ME (ALD DEND (IAN) 400

OCs in Water								od: ME-(AU)-	
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E177844.001	LB145514.022	Fumigants	2,2-dichloropropane	µg/L	0.5	<0.5	0	200	0
			1,2-dichloropropane	µg/L	0.5	<0.5	0	200	0
			cis-1,3-dichloropropene	µg/L	0.5	<0.5	0	200	0
			trans-1,3-dichloropropene	µg/L	0.5	<0.5	0	200	0
			1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	0	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	0	200	0
		Aliphatics	Chloromethane	µg/L	5	<5	0	200	0
			Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	0	200	0
			Bromomethane	µg/L	10	<10	0	200	0
			Chloroethane	µg/L	5	<5	0	200	0
			Trichlorofluoromethane	µg/L	1	<1	0	200	0
			lodomethane	µg/L	5	<5	0	200	0
			1,1-dichloroethene	µg/L	0.5	<0.5	0	200	0
			Dichloromethane (Methylene chloride)	μg/L	5	<5	0	200	0
			Allyl chloride	µg/L	2	<2	0	200	C
			trans-1,2-dichloroethene	µg/L	0.5	<0.5	0	200	C
			1,1-dichloroethane	µg/L	0.5	<0.5	0	200	(
			cis-1,2-dichloroethene	µg/L	0.5	<0.5	0	200	(
			Bromochloromethane	μg/L	0.5	<0.5	0	200	C
			1,2-dichloroethane	μg/L	0.5	<0.5	0	200	(
			1,1,1-trichloroethane	µg/L	0.5	<0.5	0	200	(
			1,1-dichloropropene	µg/L	0.5	<0.5	0	200	(
			Carbon tetrachloride	µg/L	0.5	<0.5	0	200	(
			Dibromomethane	µg/L	0.5	<0.5	0	200	(
			Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	0	200	(
			1,1,2-trichloroethane	µg/L	0.5	<0.5	0	200	(
			1,3-dichloropropane	µg/L	0.5	<0.5	0	200	(
			Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5	0	200	0
			1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	0	200	(
			cis-1,4-dichloro-2-butene	μg/L	1	<1	0	200	
			1.1.2.2-tetrachloroethane	μg/L	0.5	<0.5	0	200	0
			1,2,3-trichloropropane	μg/L	0.5	<0.5	0	200	0



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

/OCs in Water (co	-							nod: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE177844.001	LB145514.022	Halogenated	trans-1,4-dichloro-2-butene	μg/L	1	<1	0	200	0
		Aliphatics	1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	0	200	0
			Hexachlorobutadiene	μg/L	0.5	<0.5	0	200	0
		Halogenated	Chlorobenzene	μg/L	0.5	<0.5	0	200	0
		Aromatics	Bromobenzene	μg/L	0.5	<0.5	0	200	0
			2-chlorotoluene	μg/L	0.5	<0.5	0	200	0
			4-chlorotoluene	μg/L	0.5	<0.5	0	200	0
			1,3-dichlorobenzene	μg/L	0.5	<0.5	0	200	0
			1,4-dichlorobenzene	μg/L	0.3	<0.3	0	200	0
			1,2-dichlorobenzene	μg/L	0.5	<0.5	0	200	0
			1,2,4-trichlorobenzene	μg/L	0.5	<0.5	0	200	0
			1,2,3-trichlorobenzene	μg/L	0.5	<0.5	0	200	0
		Monocyclic	Benzene	μg/L	0.5	<0.5	0.04	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	0.09	200	0
			Ethylbenzene	μg/L	0.5	<0.5	0.01	200	0
			m/p-xylene	μg/L	1	<1	0.02	200	0
			o-xylene	μg/L	0.5	<0.5	0.01	200	0
			Styrene (Vinyl benzene)	μg/L	0.5	<0.5	0	200	0
			Isopropylbenzene (Cumene)	μg/L	0.5	<0.5	0	200	0
			n-propylbenzene	μg/L	0.5	<0.5	0	200	0
			1,3,5-trimethylbenzene	μg/L	0.5	<0.5	0	200	0
			tert-butylbenzene	μg/L	0.5	<0.5	0	200	0
			1,2,4-trimethylbenzene	μg/L	0.5	<0.5	0	200	0
			sec-butylbenzene	µg/L	0.5	<0.5	0	200	0
			p-isopropyltoluene	µg/L	0.5	<0.5	0	200	0
			n-butylbenzene	µg/L	0.5	<0.5	0	200	0
		Nitrogenous	Acrylonitrile	µg/L	0.5	<0.5	0	200	0
		Oxygenated	Acetone (2-propanone)	µg/L	10	<10	0	200	0
		Compounds	MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	0	200	0
			Vinyl acetate	μg/L	10	<10	0	200	0
			MEK (2-butanone)	µg/L	10	<10	0	200	0
			MIBK (4-methyl-2-pentanone)	μg/L	5	<5	0	200	0
			2-hexanone (MBK)	μg/L	5	<5	0	200	0
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	0.02	200	0
		Sulphonated	Carbon disulfide	μg/L	2	<2	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.4	5.61	30	24
		ounogates	d4-1,2-dichloroethane (Surrogate)	μg/L		4.9	5.82	30	18
			d8-toluene (Surrogate)	μg/L		4.5	4.94	30	9
			Bromofluorobenzene (Surrogate)	μg/L		5.1	5.1	30	0
		Trihalomethan	Chloroform (THM)	μg/L	0.5	<0.5	0	200	0
		es	Bromodichloromethane (THM)		0.5	<0.5	0	200	0
		85	Dibromochloromethane (THM)	μg/L	0.5	<0.5	0	200	0
			Bromoform (THM)	μg/L	0.5	<0.5	0		0
			Bromotorm (THM)	µg/L	0.5	<0.5		200	
olatile Petroleum	Hydrocarbons in Wa	iter					Meth	od: ME-(AU)-	[ENV]AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE177764.002	LB145514.024	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.28	5.88	30	11
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.17	5.96	30	14
			d8-toluene (Surrogate)	μg/L	-	5	5.02	30	0
			Bromofluorobenzene (Surrogate)	μg/L	-	3.95	3.96	30	0
		VPH F Bands	Benzene (F0)	μg/L	0.5	0	0	200	0
SE177844.001	LB145514.022		TRH C6-C10	μg/L	50	<50	0	200	0
			TRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.3	5.5	30	24
			d4-1,2-dichloroethane (Surrogate)	μg/L	_	4.9	5.86	30	18
			d8-toluene (Surrogate)	μg/L		3.8	5	30	27
			Bromofluorobenzene (Surrogate)	μg/L		3.9	3.95	30	1
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	0.04	200	0



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### PAH (Polynuclear Aromatic Hydrocarbons) in Water

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB145572.002		Naphthalene	μg/L	0.1	33	40	60 - 140	82
		Acenaphthylene	μg/L	0.1	36	40	60 - 140	91
		Acenaphthene	μg/L	0.1	31	40	60 - 140	78
		Phenanthrene	μg/L	0.1	40	40	60 - 140	100
		Anthracene	μg/L	0.1	35	40	60 - 140	88
		Fluoranthene	μg/L	0.1	39	40	60 - 140	97
		Pyrene	µg/L	0.1	38	40	60 - 140	96
		Benzo(a)pyrene	µg/L	0.1	34	40	60 - 140	86
	Surrogates	d5-nitrobenzene (Surrogate)	µg/L	-	0.3	0.5	40 - 130	50
		2-fluorobiphenyl (Surrogate)	µg/L	-	0.3	0.5	40 - 130	52
		d14-p-terphenyl (Surrogate)	µg/L	-	0.3	0.5	40 - 130	50
otal Phenolics in \	Nater					N	lethod: ME-(A	U)-[ENV]AN28
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
I D145516 002		Total Phonois	ma/l	0.01	0.21	0.25	90 120	96

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB145516.002	Total Phenols	mg/L	0.01	0.21	0.25	80 - 120	86

Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB145525.002		Arsenic, As	µg/L	1	19	20	80 - 120	96
		Cadmium, Cd	µg/L	0.1	18	20	80 - 120	92
		Chromium, Cr	µg/L	1	19	20	80 - 120	97
		Copper, Cu	μg/L	1	20	20	80 - 120	98
		Lead, Pb	μg/L	1	19	20	80 - 120	97
		Nickel, Ni	µg/L	1	19	20	80 - 120	97
		Zinc, Zn	µg/L	5	19	20	80 - 120	95
RH (Total Recov	erable Hydrocarbor	ns) in Water					Method: ME-(A	U)-[ENV]AN4
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB145572.002		TRH C10-C14	µg/L	50	1000	1200	60 - 140	86
		TRH C15-C28	µg/L	200	1200	1200	60 - 140	102
		TRH C29-C36	µg/L	200	1500	1200	60 - 140	122
	TRH F Bands	TRH >C10-C16	µg/L	60	1200	1200	60 - 140	96
		TRH >C16-C34 (F3)	µg/L	500	1300	1200	60 - 140	111
		TRH >C34-C40 (F4)	μg/L	500	780	600	60 - 140	129
OCs in Water							Method: ME-(A	U)-[ENV]AN
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB145514.002	Halogenated	1,1-dichloroethene	μg/L	0.5	50	45.45	60 - 140	111
	Aliphatics	1,2-dichloroethane	μg/L	0.5	50	45.45	60 - 140	110
		Trichloroethene (Trichloroethylene, TCE)	μg/L	0.5	50	45.45	60 - 140	109
	Halogenated	Chlorobenzene	μg/L	0.5	49	45.45	60 - 140	109
	Monocyclic	Benzene	μg/L	0.5	50	45.45	60 - 140	110
	Aromatic	Toluene	μg/L	0.5	49	45.45	60 - 140	109
		Ethylbenzene	μg/L	0.5	50	45.45	60 - 140	109
		m/p-xylene	μg/L	1	99	90.9	60 - 140	109
		o-xylene	μg/L	0.5	49	45.45	60 - 140	108
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.2	5	60 - 140	104
		d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.8	5	60 - 140	96
		d8-toluene (Surrogate)	μg/L	-	4.4	5	60 - 140	88
		Bromofluorobenzene (Surrogate)	μg/L	-	5.0	5	60 - 140	99
	Trihalomethan	Chloroform (THM)	μg/L	0.5	50	45.45	60 - 140	110
olatile Petroleum	Hydrocarbons in V	Vater					Method: ME-(A	U)-[ENV]AN
	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
Sample Number		7511.00.010	µg/L	50	740	946.63	60 - 140	78
Sample Number LB145514.002		TRH C6-C10	P9/L				00 110	10
		TRH C6-C9	µg/L	40	950	818.71	60 - 140	116
	Surrogates							

µg/L

µg/L

µg/L

VPH F Bands

d8-toluene (Surrogate)

Bromofluorobenzene (Surrogate)

TRH C6-C10 minus BTEX (F1)

88

112

67

5

5

639.67

4.4

5.6

430

50

60 - 140

60 - 140

60 - 140



Method: ME-(AU)-[ENV]AN433

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	ed) in Water				Me	hod: ME-(AU)-	[ENV]AN31 [,]	I (Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE177844.001	LB145535.004	Mercury	mg/L	0.0001	0.0081	<0.0001	0.008	101

### Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dis	solved) in Water by ICPMS					Met	hod: ME-(Al	J)-[ENV]AN318
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE177311RE.0	LB145525.004	Cadmium, Cd	µg/L	0.1	20	<0.1	20	99

### VOCs in Water

QC Sample	Sample Number	r	Parameter	Units	LOR	Original	Spike	Recovery%	
SE177844.006	LB145514.021	Monocyclic	Benzene	µg/L	0.5	<0.5	45.45	93	
		Aromatic	Toluene	µg/L	0.5	<0.5	45.45	93	
			Ethylbenzene	µg/L	0.5	<0.5	45.45	95	
			m/p-xylene	µg/L	1	<1	90.9	95	
			o-xylene	µg/L	0.5	<0.5	45.45	97	
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	-	-	
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.7	-	92	
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.7	-	96	
			d8-toluene (Surrogate)	µg/L	-	4.2	-	82	
			Bromofluorobenzene (Surrogate)	µg/L	-	4.1	-	87	
/olatile Petroleu	Im Hydrocarbons in \	Vater					M	ethod: ME-(AU)	-[ENV]/
QC Sample	Sample Number	r	Parameter	Units	LOR	Original	Spike	Recovery%	
SE177844.006	LB145514.021		TRH C6-C10	µg/L	50	<50	946.63	69	
			TRH C6-C9	µg/L	40	<40	818.71	75	
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.7	-	92	
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.7	-	96	
			d8-toluene (Surrogate)	µg/L	-	4.2	-	82	
			Bromofluorobenzene (Surrogate)	μg/L	-	4.1	-	87	
		VPH F	Benzene (F0)	μg/L	0.5	<0.5	-	-	
		Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	639.67	61	



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

Appendix J- QA/QC Assessment

# J1QUALITY CONTROL PROGRAM

## J1.1PROJECT QA/QC PROTOCOLS

The overall quality assurance comprises an assessment of the reliability of the field procedures and the laboratory results against standard industry practices, documented sampling and analysis plans or remediation action plans. A summary of the project QA/QC protocols to be followed during the investigation works is presented in **Table J-1**.

### Table J-1QA/QC Protocols

Task	Description	Project
Field QA/QC		
General	Work was be undertaken following standard field procedures which are based on industry accepted standard practice.	Soil samples were generally collected directly off the drilling rods or hand auger. Soil samples were placed in 250 gram glass jars, which were filled to minimise headspace, and sealed using Teflon- coated lids.
	All fieldwork was supervised by a suitably qualified and experienced scientist or engineer.	Yes
Soil screening with PID	The PID was serviced and calibrated as per the manufacturer requirements. PID calibrated at the beginning and end of each day of fieldwork.	Yes
Equipment decontamination / Rinsate Samples	Sampling equipment to be decontaminated after the collection of each sample by washing with phosphate- free detergent (such as Decon 90) and potable water, followed by a final distilled water rinse.	Part Rinsate samples were collected for both soil and groundwater sampling events. Analytes were below the laboratory PQLs, with the exception of zinc in the groundwater. And chromium, copper, lead, nickel and zinc in the soil investigation.
	One rinsate blank would be collected per sampling event and analysed for the primary contaminants. All results should be non-detect.	The metals found in reinstate were low in comparison to the corresponding groundwater and soil results. El considers decontamination procedures were adequate and the collected data is still valid.
Transport	Samples were stored in ice-brick cooled cooler box and transported to the primary and secondary laboratories. To ensure the integrity of the samples from collection to receipt by the analytical laboratory, samples were sent by courier to the laboratories under 'chain of custody' describing sample preservation, and transport duration.	Yes



Task	Description	Project
Trip Blanks	Trip blank samples were prepared and analysed by the primary laboratory for BTEX and naphthalene. Analytical results for trip blank samples below the laboratory PQLs, indicate that ideal sample transport and handling conditions are achieved.	Yes
Trip Spikes	Trip spike samples were prepared and analysed by the primary laboratory for BTEX. Acceptance criteria of BTEX spike recoveries are between 70% - 130%.	Yes Volatile contamination was not identified in any of soil samples or detected through field soil vapour screening with PID or unusual odour. Samples were stored under chilled / refrigerated conditions on site and in the laboratory and thus potential volatile losses were minimised. The absence of trip spike result does not affect the overall reliability of the data. Recoveries of the trip spike for Solis and GMEs was within the acceptance criteria.
QA samples	Field and laboratory QA samples will be analysed as follows:	Part See <b>Table J-2</b>
	intra-laboratory and inter-laboratory duplicate samples will be collected at a rate of 1 pair per 20 primary samples	Calculated RPD ( <b>table B.3</b> ) values between most primary and field duplicate samples are within the acceptance criteria ( <b>Section J1.2</b> ), with the exception of:
		<ul> <li>Between soil sample BH8_0.3-0.4 and QT1:</li> </ul>
		<ul> <li>Chromium (160.40%)</li> <li>Lead (199.30%)</li> <li>Nickel (191.20%)</li> <li>Zinc (71.26%)</li> <li>Between water sample BH1M-1 and GWQD1:         <ul> <li>Chromium (66.67%)</li> <li>Lead (80.00%)</li> </ul> </li> <li>Between water sample BH1M-1 and GWQT1:         <ul> <li>Chromium (66.67%)</li> <li>Chromium (66.67%)</li> <li>Chromium (66.67%)</li> <li>Copper (78.26%)</li> </ul> </li> </ul>
		<ul> <li>Lead (80.00%)</li> <li>The exceedances were considered a result of sample heterogeneity. RPD exceedances in question do not affect the overall conclusion drawn in regards to soil and groundwater conditions at the site.</li> </ul>



Task	Description	Project
Laboratory analysis	The laboratories selected are NATA accredited for the analytes selected and perform their own internal QA/QC programs Appropriate detection limits were used for the analyses to be undertaken.	Yes SGS - primary laboratory Envirolab - secondary laboratory The laboratory QA/QC reports are included in <b>Appendix I.</b> Practical Quantitation Limits for all tested parameters during the assessment of soils and groundwater are presented in summary tables <b>Table B.1 – B.2</b>
	Methods followed are generally in accordance with the requirements of NEPM (2013).	Yes
Holding Times	Holding times are the maximum permissible elapsed time in days from the collection of the sample to its extraction and/or analysis. All extraction and analyses should be completed within standard guidelines.	Yes
Laboratory Duplicates	Laboratory duplicates are field samples that are split in the laboratory and subsequently analysed a number of times in the same batch. These sub-samples are selected by the laboratory to assess the accuracy and precision of the analytical method. The selected laboratories should undertake QA/QC procedures such as calibration standards, laboratory control samples, surrogates, reference materials, sample duplicates and matrix spikes. Intra- laboratory duplicates should be performed at a frequency of 1 per 10 samples.	The Laboratory duplicate samples for the analysis batches showed most calculated RPDs that were within acceptable ranges and conformed to the DAC. Exceptions are noted to be: • SE177041.010 • Copper (42%). • SE177041.019 • Chromium (57%) • SE177041.029 • Chromium (55%) • Copper (52%) • Lead (42%) • Zinc (47%) Exceedances of the acceptable ranges were attributed to sample heterogeneity.
Laboratory Control Standard	A laboratory control standard is a standard reference material used in preparing primary standards. The concentration should be equivalent to a mid-range standard to confirm the primary calibration. Laboratory control samples should be performed on a frequency of 1 per 20 samples or at least one per analytical run.	The Laboratory Control Samples for the analysis batches were within acceptable ranges.



Task	Description	Project	
Matrix Spikes / Matrix Spike Duplicates (MS/MSD)	MS/MSDs are field samples to which a predetermined stock solution of known concentration has been added. The samples are then analysed for recovery of the known addition. Recoveries should be within the stated laboratory control limits of 70 to 130% and duplicates should have RPDs of less than 50%.	Most MS / MSD for the analysis batches were within acceptable ranges with the exception of: • SE177041.020: • Lead (142%) Recovery failure was attributed to sample heterogeneity.	
Surrogate Spikes	Surrogate spikes provide a means of checking, for every analysis that no gross errors have occurred at any stage of the procedure leading to significant analyte loss. Recoveries should be within the stated laboratory control limits of 70 to 130%.	Surrogate spikes for the analysis batches were within acceptable ranges.	
QA/QC Conclusion	The QA/QC indicators should either all comply with the required standards or showed no variations that would have no significant effect on the quality of the data.	El considers that although a small number of discrepancies were identified, which in most cases could be attributed to the heterogeneous nature of the submitted samples, the data generally confirms that the analytical results for the various phases of laboratory testing were val and useable for interpretation purposes.	

## J1.2CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

 $C_{O}$  = Concentration obtained for the primary sample; and

 $C_R$  = Concentration obtained for the blind replicate or split duplicate sample.

Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where:

- Results are less than 10 times the limits of reporting (LOR);
- Results are less than 20 times the LOR and the RPD is less than 50%; or
- Heterogeneous materials or volatile compounds are encountered.

In cases where RPD value was considered unacceptable, the analytical results of primary and duplicate samples were both reviewed against the adopted assessment criteria. If the review indicates the variations in data between the primary and duplicate samples would result in a different conclusion (e.g. the higher concentration is failing the assessment criteria), the need for re-sampling / validation would be considered.



# J2FIELD QA/QC DATA PROGRAM

## J2.1FIELD QA SAMPLING PROGRAM

The field quality assurance/quality control (QA/QC) samples collected during the investigation works are summarised on **Table J-2.** Inter-lab duplicates were analysed by the secondary laboratory, Envirolab. Analytical results of the Field QA samples are tabulated in **Table J-3**, alongside calculated RPDs between the primary and field duplicate samples.

### Table J-2Field QA Sampling Program

Activity	Matrix	No. Primary Samples	Primary Sample ID	Intra-Lab Duplicate ID	Inter-Lab Duplicate ID	No. of Duplicates	Duplicate Ratio
Field QA Sam	Field QA Samples - Duplicates						
Soil Investigation	Soil	28	BH8_0.3-0.4	QD1	QT1	2	1:14
GME	Water	5	BH1M-1	GWQD1	GWQT1	2	2:5
Other Field QA Samples							
Soil Investigation	Soil Water	TB1 – trip blank TS1 – trip spike QR1 – rinsate					
		QRB1 – rir	nsate blank				
GME	Water	GWQR - Rinsate GWTB – Trip blank GWTS – Trip spike					

## J2.2Field Data Quality Indicators

A discussion of the field data quality indicators is presented below.

### Table J-4Field Data Quality Indicators

QA/QC Measures	Field Data Quality Indicators	Conformance / Comments
<b>Precision</b> – A quantitative measure of the variability (or reproducibility) of data	Standard operation procedures appropriate and complied with	Yes
Completeness – A	Each critical location sampled	Yes
measure of the amount of useable data from a data	Samples collected at targeted locations and depth	Yes
collection activity	SAQP appropriate and complied with	Yes
	Experienced sampler	Yes
	Field documentation correct	Yes



QA/QC Measures	Field Data Quality Indicators	Conformance / Comments
<b>Comparability</b> – The confidence	Same sampling method used on each occasion/location	Yes
(expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event	Experienced sampler	Yes
	Climatic conditions (temperature, rainfall, wind)	Climate conditions were recorded to be fine. These climatic conditions unlikely had significant influence on the results of the investigation.
	Same type of samples collected (filtered, size, fractions)	Yes
Representativeness – The confidence (expressed qualitatively) that data are representative of each medium present onsite	Appropriate media sampled according to SAQP	Yes
	Each media identified in SAQP sampled	Yes
	Appropriate sample collection methodologies, handling, storage and preservation techniques used	Yes
	Consistency between field observations and laboratory results.	Yes
Accuracy – A quantitative measure of the closeness of reported data to the "true" value	Standard operation procedures appropriate and complied with	Yes
	Calibration of instruments against known standards	Yes

## J2.3CONCLUSION FOR THE FIELD QA/QC

Based on the above review of the field QA/QC data EI considered the field QA/QC programme carried out during the investigations to be appropriate and the results to be acceptable.



# J3LABORATORY QA/QC

## **J3.1LABORATORY ACCREDITATION**

Primary and intra-laboratory duplicate samples were analysed by SGS Alexandria Environmental, NSW; inter-laboratory triplicate samples were analysed by Envirolab, Chatswood NSW; all laboratories are accredited by NATA for the analyses undertaken.

A discussion of the laboratory DQIs is presented below.

### Table J-5Lab Data Quality Indicators

QA/QC Measures	Laboratory Data Quality Indicators	Conformance/Comments
<b>Completeness</b> – A measure of the amount of useable data from a data collection activity	All critical samples analysed according to SAQP and proposal	Yes
	All analytes analysed according to SAQP in proposal	Yes
	Appropriate methods and PQLs	Yes
	Sample documentation complete	Yes
	Sample holding times complied with	Yes
<b>Comparability</b> – The confidence	Same sample analytical methods used (including clean-up)	Yes
(expressed qualitatively) that	Same Sample PQLs	Yes
data may be considered to be	Same laboratories (NATA-accredited)	Yes
equivalent for each sampling and analytical event	Same units	Yes
Representativeness – The confidence	All key samples analysed according to SAQP in the proposal.	Yes
(expressed qualitatively) that data are representative of each medium present onsite	Analysis of laboratory-prepared volatile trip spikes and trip blanks	Yes
<b>Precision</b> – A quantitative measure of the variability (or reproducibility) of data	Analysis of laboratory and inter- laboratory duplicates	Yes
	Analysis of field duplicates	Yes
Accuracy – A	Analysis of rinsate blanks	Yes
quantitative measure of the closeness of	Analysis of reagent blanks	Not applicable
reported data to the	Analysis of method blanks	Yes



QA/QC Measures	Laboratory Data Quality Indicators	Conformance/Comments
"true" value	Analysis of matrix spikes (MS)	Yes
	Analysis of matrix spike duplicates (MSD)	Yes
	Analysis of surrogate spikes	Yes
	Analysis of reference materials	Not applicable
	Analysis of laboratory control samples	Yes
	Analysis of laboratory-prepared spikes	Yes

Overall, it is considered that the laboratory data quality objectives for this project have been attained.

## J3.2CONCLUSIONS ON LAB QA/QC

Based on the laboratory QA/QC results EI considers that although a small number of discrepancies were identified, which in most cases could be attributed to the non-homogenous nature of the submitted samples, the data generally confirms that the analytical results for the various phases of laboratory testing were valid and useable for interpretation purposes.

## J4Summary of Project QA/QC

The sampling methods (including sample preservation, transport and decontamination procedures) and laboratory methods followed during this investigation works were mostly consistent with EI protocols and meeting the DQOs for this project. Some discrepancies from the DQOs were reported however they were considered to not be detrimental to the validity of collected data. It is therefore considered that the data is sufficiently precise and accurate and that the results can be relied upon for interpretation.

