

Croydon 88 Pty Ltd

REMEDIATION ACTION PLAN

15-33 Brighton Avenue, Croydon Park NSW

Report E22142.E06_Rev1 20 July 2020

REPORT DISTRIBUTION

Remediation Action Plan 15-33 Brighton Avenue, Croydon Park NSW

El Report No.: E22142.E06_Rev1 Date: 20 July 2020

Copies	Recipient
1 Soft Copy (PDF – Secured, issued by email)	Croydon 88 Pty Ltd
	Level 1 / 74 Macquarie Street,
	Parramatta NSW 2150
Original (Saved to Digital Archives)	El Australia
	Suite 6.01, 55 Miller Street,
	Pyrmont NSW 2009

Author

Technical Reviewer

WARWICK HAYES Environmental Scientist

MALCOLM DALE Senior Principal – Contaminated Land CEnvP (CL Specialist) Cert. No. 0853

Revision	Details	Date	Amended By
0	Original	30 September 2019	-
1	Auditor comments	20 July 2020	BA / WH / MD

© 2020 El Australia (El)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by EI.

CONTENTS

EXEC	XECUTIVE SUMMARY			
1	INTRODUCTION 1.1 BACKGROUND 1.2 PROPOSED DEVELOPMENT 1.3 OBJECTIVES 1.4 SCOPE OF WORK 1.5 REGULATORY FRAMEWORK 1.6 DEVIATIONS FROM THIS RAP	1 1 1 2 2 3		
2	SITE DESCRIPTION 2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING 2.2 SURROUNDING LAND USE 2.3 REGIONAL SETTING 2.4 GROUNDWATER BORE RECORDS AND LOCAL GROUNDWATER USE	4 4 4 5 5		
3	SITE CHARACTERISATION3.1PREVIOUS INVESTIGATION REPORTS3.2SUMMARY OF PREVIOUS INVESTIGATION FINDINGS3.3CONCEPTUAL SITE MODEL (CSM)3.4EXISTING SITE CONTAMINATION3.5DATA GAPS3.6EXTENT OF REMEDIATION REQUIRED	6 6 7 8 9 9		
4	DATA QUALITY OBJECTIVES	10		
5	REMEDIATION GOALS AND CRITERIA 5.1 REMEDIATION GOALS 5.2 REMEDIATION CRITERIA	13 13 13		
6	REMEDIATION TECHNOLOGY6.1REGULATORY OVERVIEW6.2REMEDIAL TECHNOLOGIES REVIEW6.3PREFERRED REMEDIATION OPTION6.4SITE PREPARATION, LICENCES AND APPROVALS	15 15 15 18 18		
7	REMEDIATION WORKS7.1REMEDIATION STRATEGY7.2REMEDIATION METHODOLOGY7.3REMEDIATION SCHEDULE7.4REMEDIATION HOLD POINTS7.5REMEDIAL CONTINGENCIES	20 20 20 26 27 27		
8	SITE MANAGEMENT	29		
	 8.1 RESPONSIBILITIES AND CONTACTS 8.2 MATERIALS HANDLING AND MANAGEMENT 8.3 MANAGEMENT MEASURES 8.4 CONTINGENCY MANAGEMENT 8.5 WORK HEALTH AND SAFETY PLAN 8.6 UNEXPECTED FINDS PROTOCOL 	29 30 32 34 35 37		
9	 VALIDATION SAMPLING AND ANALYSIS QUALITY PLAN 9.1 VALIDATION SOIL SAMPLING METHODOLOGY 9.2 VALIDATION REPORTING 	39 39 43		
10	CONCLUSIONS	44		
11	STATEMENT OF LIMITATIONS	45		
REFE	RENCES	46		
ABBR	EVIATIONS	47		

TABLES

TABLE 2-1	SITE IDENTIFICATION, LOCATION AND ZONING	4
TABLE 2-2	SURROUNDING LAND USES	5
TABLE 2-3	REGIONAL SETTING INFORMATION	5
TABLE 3-2	CONCEPTUAL SITE MODEL	8
TABLE 4-1	SUMMARY OF PROJECT DATA QUALITY OBJECTIVES	11
TABLE 5-1	SOIL AND GROUNDWATER REMEDIATION CRITERIA	14
TABLE 6-1	REMEDIAL TECHNOLOGY REVIEW - SOILS	16
TABLE 6-2	REMEDIATION WORKS CATEGORY DETERMINATION	18
TABLE 7-1	SAQP FOR GROUNDWATER INVESTIGATION	25
TABLE 7-2	INDICATIVE SITE REMEDIATION SCHEDULE	26
TABLE 7-3	REMEDIATION HOLD POINTS	27
TABLE 7-4	REMEDIAL CONTINGENCIES	27
TABLE 8-1	SITE MANAGEMENT RESPONSIBILITIES	29
TABLE 8-2	MATERIALS HANDLING AND MANAGEMENT REQUIREMENTS	30
TABLE 8-3	SITE MANAGEMENT MEASURES	32
TABLE 8-4	CONTINGENCY MANAGEMENT	34
TABLE 8-5	REMEDIAL HAZARDS	36
TABLE 8-6	UNEXPECTED FINDS PROTOCOL	37
TABLE 9-1	VALIDATION SAMPLE COLLECTION AND HANDLING PROCEDURES	39
TABLE 9-2	DQIS FOR VALIDATION ASSESSMENT	42

FIGURES

FIGURE 1	SITE LOCALITY PLAN
FIGURE 2	SITE LAYOUT PLAN WITH SOIL SAMPLING LOCATIONS

APPENDICES

APPENDIX A SITE SURVEY AND PROPOSED DEVELOPMENT PLANS APPENDIX B BOREHOLE LOGS (EI, 2018A/B) APPENDIX C ANALYTICAL RESULTS (EI, 2018A/B) APPENDIX D REMEDIATION ACCEPTANCE CRITERIA APPENDIX E REVIEW OF REMEDIAL OPTIONS AND TECHNOLOGIES

EXECUTIVE SUMMARY

Background

This Remediation Action Plan (RAP) outlines the procedures that will be used to remediate the block of land identified as 15-33 Brighton Avenue, Croydon Park NSW ('the site'). The site is situated within the Local Government Authority of Canterbury Bankstown Council, covering a total area of approximately 14,700m². Six separate (adjoining) properties make up the site, all of which have been used for commercial purposes (**Figures 1** and **2**). The cadastral identifications are as follows:

- 15 Brighton Avenue: Lot C in Deposited Plan (DP) 440959 (approximately 980m²);
- 17 Brighton Avenue: Lot 2A, Section 2 in DP 3010 (approximately 1500m²);
- 19 Brighton Avenue: Lots A and B in DP 333556 (approximately 1500m²);
- 21 Brighton Avenue: Lot 1 in DP 123636 (approximately 1500m²);
- 23-25 Brighton Avenue: Lot 11 in DP 862370 (2426m²); and
- 27-33 Brighton Avenue: Lot 10 in DP 1026819 (6770m²).

Based on the findings from previous investigations completed by EI in 2016 and 2018, an underground petroleum storage system (UPSS) had been installed in the south western corner of the site, while localised areas of asbestos-, heavy metal- (copper and zinc) and recoverable hydrocarbon-impacted filling were present. Remediation was deemed necessary, prior to (or as part of) development of the property.

The aim of this RAP is to guide remediation works required to make the site suitable for all uses permissible under the proposed new zoning. It has been prepared in support of a Planning Proposal to Canterbury Bankstown Council and enable the developer to meet its obligations under the *Contaminated Land Management Act 1997* (CLM Act 1997), for the assessment and management of contaminated soil and/or groundwater.

Remediation Strategy

The preferred remedial strategy is off-site disposal of impacted soils to licensed waste facilities. Following approvals and site establishment, the main remediation works will include, but not necessarily be limited to:

- Stage 1 Additional Investigation for Data Gap Closure;
- Stage 2 Site Preparation;
- Stage 3 Ground Surface Inspection;
- Stage 4 UPSS Excavation and Disposal;
- Stage 5 Handling and Management of Fill Soil for Off-site Disposal;
- Stage 6 Site Validation and VENM Classification;
- Stage 7 Validation Report Preparation.

All wastes shall be transported to appropriate, EPA-licensed facilities, after formal classification. All excavated (remediation) areas shall be validated, to confirm that remaining site soils are suitable for the proposed land zoning and its permissible uses. Site reinstatement with validated natural materials will be performed where required.

In summary, EI considers that the site can be made suitable for a range of uses (including residential), through the implementation of the works described in this RAP.

Should unexpected finds be discovered during the course of the remediation program, the procedures described under the Unexpected Finds Protocol and the Site Validation Plan will be implemented,

until the remediation goals have been achieved and the land is deemed suitable for the intended use(s).

Following completion of the remediation and validation works a Site Validation Report will be prepared in accordance with the OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*.

1 INTRODUCTION

1.1 BACKGROUND

Mr Andrew Shehadeh of Dyldam (the Client) engaged El Australia Pty Ltd (El) to prepare a Remediation Action Plan (RAP) for the block of land identified as 15-33 Brighton Avenue, Croydon Park NSW ('the site').

The site is situated approximately 9km south west of the Sydney central business district, within the Local Government Authority of Canterbury Bankstown Council (**Figure 1**), covering a total area of approximately 14,700m². Six separate (adjoining) properties make up the site, all of which have been used for commercial purposes (**Figure 2**). The cadastral identifications are as follows:

- 15 Brighton Avenue: Lot C in Deposited Plan (DP) 440959 (approximately 980m²);
- 17 Brighton Avenue: Lot 2A, Section 2 in DP 3010 (approximately 1500m²);
- 19 Brighton Avenue: Lots A and B in DP 333556 (approximately 1500m²);
- 21 Brighton Avenue: Lot 1 in DP 123636 (approximately 1500m²);
- 23-25 Brighton Avenue: Lot 11 in DP 862370 (2426m²); and
- 27-33 Brighton Avenue: Lot 10 in DP 1026819 (6770m²).

Based on the findings from previous investigations completed by EI in 2016 and 2018, an underground petroleum storage system (UPSS) had been installed in the south western corner of the site, while localised areas of asbestos-, heavy metal- (copper and zinc) and recoverable hydrocarbon-impacted filling were present. Remediation was deemed necessary, prior to (or as part of) development of the property.

El understand that this RAP has been prepared to enable the developer to meet its obligations under the *Contaminated Land Management Act 1997* (CLM Act 1997) and accompany a Planning Proposal to Canterbury Bankstown Council for rezoning of the land and subsequent future development. As required in the Ministerial Direction 2.6 (s.9.1 of the EP&A Act 1997), if the land for rezoning is contaminated, all permitted uses (with or without consent) are or can be made suitable with remediation for each potential use in the new zone. Given that the intended (new) land zoning was *R4 High Density Residential*, as classified under the *Canterbury Local Environmental Plan 2012*, this RAP has been prepared to guide the remediation works required to make the site suitable for all uses permissible under this zoning.

It was understood that Mr Rod Harwood of Harwood Environmental Consultants (HEC) is the appointed NSW EPA Site Auditor, engaged for the purpose of reviewing this RAP and preparing a Site Audit Statement (SAS) / Report (SAR).

1.2 PROPOSED DEVELOPMENT

Based on the plans provided by the Client relating to the current Planning Proposal (**Appendix A**), the land is to be re-zoned and redeveloped. The proposed development involves demolition of all existing structures, followed by the construction of multiple, 4 to 5 storey, mixed commercial and residential apartment buildings. Commercial apartments will occupy the ground floor of each building fronting Brighton Avenue. The development will include a one to two level, basement car parking facility, requiring excavation of site soils to approximately 6m below ground level (BGL).

1.3 OBJECTIVES

The main objectives of this RAP are to:

- Provide detailed procedures on how to carry out remediation works in a safe and environmentally friendly manner, while minimising impacts to human health (including site workers and the general public) and the environment; and
- Provide a sampling and analytical quality plan to be used for site validation.

1.4 SCOPE OF WORK

With the aim of achieving the above objectives, the scope of work for this RAP includes:

- Preview of the available data relevant to the remediation of the site, provided by the previous investigation reports;
- Definition of remediation goals and acceptance criteria;
- Technical evaluation of the remedial options for the site and selection of the most appropriate remedial strategy (or combination of strategies);
- Provision of information so that remedial works may be carried out in accordance with relevant laws and regulations;
- Provision of guidance on approvals and licences required for the remedial works, under current legislation (e.g. *State Environmental Planning Policy 55 Remediation of Land*);
- Provision of information to assist the contractor in their preparation of a Work Health and Safety Plan and other site management/planning documents; and
- Development of a sampling, analysis and quality strategy for hotspot delineation and post-remedial validation.

This RAP also outlines measures for the excavation, stockpiling, management and disposal of spoil, water and sediment controls, as well as a contingency plan to handle any additional contamination that may be identified during the site remedial / validation works.

The measures provided in this RAP are designed to accompany site-specific management plans, such as a Construction Environment Management Plan (CEMP) and Work Health and Safety Plan (WHSP). These measures do not replace any other requirements for the site as a whole. A complete set of site specific management plans should be developed and adhered to. An outline of management measures to be addressed is provided in **Section 8.3**.

1.5 REGULATORY FRAMEWORK

The following regulatory framework and guidelines were considered during the preparation of this RAP:

Legislation

- Contaminated Land Management Act 1997 (CLM Act 1997);
- Protection of the Environment Operations Act 1997 (PoEO Act 1997) and associated regulations;
- State Environment Protection Policy 55 Remediation of Land (SEPP 55), under the Environmental Planning and Assessment Act 1997 (EP&A Act 1997);
- Canterbury Development Control Plan 2012;
- Canterbury Local Environmental Plan 2012; and
- Work Health and Safety Act 2011 (WHS Act 2011) and associated codes of practice.

Guidelines

- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- EPA (1995) Sampling Design Guidelines;
- EPA (2014a) Technical Note: Investigation of Service Station Sites;
- EPA (2014b) Waste Classification Guidelines;
- EPA (2017) Guidelines for the NSW Site Auditor Scheme;

- NEPC (2013) Schedule B(1) *Guideline on Investigation Levels for Soil and Groundwater* and Schedule B(2) *Guideline on Site Characterisation*; and
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.6 DEVIATIONS FROM THIS RAP

This RAP is designed to provide some flexibility to vary the sequence and/or details of the actual site remediation and validation works to meet site constraints; however, a qualified Environmental Scientist performing the roles of Environmental Management Coordinator and Remediation Supervisor should be appointed to the project to ensure that:

- Critical stages of the site remediation/validation process (including, but not limited to, induction of site personnel, marking of remediation areas, inspection of environmental monitoring systems, implementation of specified control measures, data gap closure and validation sampling) are appropriately implemented, with the relevant data collected for environmental reporting purposes; and
- Any deviations from the works specified in this RAP are properly documented and approved, as required under the OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*.

Performing remedial works without the presence of a qualified environmental engineer/scientist when necessary may lead to project delays and extra costs, due to additional environmental investigation requirements to confirm the environmental status of the site.

Waste materials removed from the site without proper characterisation (i.e. classification assessment), may lead to regulatory action and potential penalties, as described under the *Waste Regulation 2014*, the *Protection of the Environment Operations Act 1997* and the *Contaminated Land Management Act 1997*.

2 SITE DESCRIPTION

2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1**.

Attribute	Description	
Street Address	15-33 Brighton Avenue, Croydon Park NSW	
Location Description	Approximately 9km south west of the Sydney central business district, bound by Brighton Avenue (west) and residential dwellings in all other directions.	
Geographical Coordinates	North eastern corner of site (GDA94-MGA56):	
	Easting: 325177.505;	
	Northing: 6247758.513 (Source: http://maps.six.nsw.gov.au).	
	(Source. <u>mtp.//maps.six.nsw.gov.au</u>).	
Site Area	Approximately 1.47 hectares (14,700m ²)	
Lots and Deposited Plans	 15 Brighton Avenue: Lot C in DP 440959; 	
(DP)	 17 Brighton Avenue: Lot 2A, Section 2 in DP 3010; 	
	 19 Brighton Avenue: Lots A and B in DP 333556; 	
	 21 Brighton Avenue: Lot 1 in DP 123636; 	
	 23-25 Brighton Avenue: Lot 11 in DP 862370; and 	
	 27-33 Brighton Avenue: Lot 10 in DP 1026819. 	
State Survey Marks	State Survey (SS) marks in close proximity to the site:	
	SS75308D, located on the corner of Brighton Ave and Georges Road (north- east of the site);	
	SS131351: located on the corner of Hampstead Road and The Crescent; and	
	SS71393 / SS99220D on the corner of The Crescent and Kessell Ave (north- east of the site).	
	(Source: http://maps.six.nsw.gov.au).	
Local Government Authority	Canterbury Bankstown Council	
Parish	Leichhardt	
County	Cumberland	
Current Zoning	IN2 – Light Industrial (Canterbury Local Environment Plan 2012)	

Table 2-1 Site Identification, Location and Zoning

2.2 SURROUNDING LAND USE

The site is situated within an area of mixed uses on surrounding land as described in **Table 2-2**. The local sensitive receptors within close proximity to the site are also identified.

Direction	Land Use Description	Sensitive Receptors
North	Residential dwellings	Residential dwellings
South	Residential dwellings	Residential dwellings
East	Residential dwellings	Residential dwellings
West	Brighton Ave, followed by residential dwellings	Residential dwellings

Table 2-2 Surrounding Land Uses

Sensitive land uses, such as schools and childcare centres, were not in the vicinity the site (<200m).

2.3 REGIONAL SETTING

Local topography, (hydro)geology and soil landscape information are summarised in Table 2-3.

Attribute	Description
Ground Topography	The site slopes towards the south / south-west.
Site Drainage	Site drainage expected to be consistent with the general slope of the land. Stormwater likely to be collected by pit and pipe services of the municipal stormwater system, discharging into the Cooks River, located about 500m south of the site.
Regional Geology	With reference to the 1:100,000 scale <i>Sydney Geological Series Sheet 9130</i> , the site overlies and interface between Ashfield and Bringelly Shales. Ashfield Shale is described as black to dark-grey shale and laminite, while Bringelly Shale is described as shale, carbonaceous claystone, laminite, fine to medium-grained lithic sandstone, rare coal and tuff.
Soil Landscapes	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Chapman and Murphy, 2002) indicates that the site overlies a Blacktown soil landscape, which is described as gently undulating rises on the Wianamatta Group shales, with shallow to moderately deep (<100 cm) red and brown podzolic soils on crests, upper slopes and well drained areas; deep (150 – 300 cm) yellow podzolic soils and soloths on lower slopes and in areas of poor drainage.
Acid Sulfate Soil Risk	The Canterbury LEP 2012 Acid Sulfate Soils Map (Sheet_006) shows the site to be within a Class 5 area with respect to acid sulfate soils (ASS). With reference to the Prospect / Parramatta Acid Sulfate Soil Risk Map (1:25,000 scale; Murphy, 1997), the site is located within an area of No Known Occurrence.
Nearest Surface Water Feature	Cooks River, located approximately 500m south of the site.
Groundwater Flow Direction	Anticipated to be southwards, towards Cooks River.

Table 2-3 Regional Setting Information

2.4 GROUNDWATER BORE RECORDS AND LOCAL GROUNDWATER USE

An online search for groundwater bores registered (licensed) with WaterNSW was conducted as part of the EI (2016) preliminary site investigation. There were no registered bores within a 500m radius of the site, indicating that local groundwater usage was low.

3 SITE CHARACTERISATION

3.1 **PREVIOUS INVESTIGATION REPORTS**

The following environmental reports provided information that assisted the preparation of this RAP:

- El Australia (2016) Preliminary Site Investigation; 15-33 Brighton Avenue, Croydon Park NSW (El Report E22142 AA_Rev0; dated 26 May, 2016);
- El Australia (2018a) Detailed Site Investigation; 25-33 Brighton Avenue, Croydon Park NSW (El Report E23775.E02_Rev0; dated 20 April, 2018); and
- El Australia (2018b) Detailed Site Investigation; 15-21 Brighton Avenue, Croydon Park NSW (El Report E23959.E02_Rev0; dated 10 September, 2018).

A summary of each investigation is provided in Section 3.2 (Table 3-1) below. Refer also to Figure 2, as well as Appendices B and C.

3.2 SUMMARY OF PREVIOUS INVESTIGATION FINDINGS

Table 3-1 Previous Investigation Findings		
Assessment Details	Project Tasks and Findings	
Preliminary Site Inve	stigation (El, 2016)	
Objective	The main objective of this investigation was to appraise the potential for site contamination, on the basis of historical land uses and anecdotal and documentary evidence of possible pollutant sources.	
Key Findings	At the time of this investigation, the site was occupied by six, separate commercial / industrial warehouses and one former residential dwelling, with unsealed and sealed areas surrounded the buildings. Historical records established that the land had been residential in nature up to the 1970s / 1980s. Commercial redevelopment took place thereafter, the activities including mechanical workshops for radiator and air conditioning units, storage and distribution of textile goods (linen / clothing), manufacturing and fitting of automotive exhaust systems, repair and warehousing of electrical equipment, a timber yard, storage of batteries, storage of boats and heavy machinery, a printing factory, bulk storage of building materials (including sandstone and tiles) and furniture, a motor mechanic workshop, assembly of toys and sporting goods and manufacturing of fibreglass components. Council archives had evidence of oil spillage on 17 Brighton Avenue, with "no precautionary methods in place to prevent discharge into the stormwater system". Despite this, the site was free of statutory notices and licencing agreements issued by the NSW Environment Protection authority (EPA), while SafeWork NSW had no records pertaining to the storage of dangerous goods on any of the allotments. Building materials containing (potential) hazardous materials were identified during the site walkover inspection, while filling materials of unknown origins were expected. A UPSS (diesel) was identified in the south western corner.	
Conclusions and Recommendations	 The conceptual site model (CSM) established that potential contaminating sources occurred at the site. Given the nature of the proposed redevelopment, EI recommended further investigations be conducted, to quantify any contamination risks and inform the selection of remedial and risk mitigation measures (if required). These included: a detailed soil and groundwater sampling program; and a hazardous materials survey for the site buildings (including their stored contents and wastes). 	
Detailed Site Investig	yation (El, 2018a)	
Objective	The primary objective of this investigation was to determine the degree of any potential contamination on the southern part of the site (9196m ²), by means of intrusive sampling and laboratory analysis for relevant contaminants. If contamination was confirmed, secondary objectives were to evaluate the risks posed	

to human health and the environment and confirm whether remediation was warranted.

Assessment Details	Project Tasks and Findings
Key Findings	Soil profiling and sampling were conducted at twenty one borehole locations (BH1- BH21), constructed to a maximum depth of 6.4m BGL. The sampling regime followed a mixed judgemental and systematic (triangular grid) pattern, with allowance for structural obstacles. The sub-surface layers were comprised of heterogeneous (anthropogenic) fill materials (0.5-1.3m thickness), underlain by residual clays and sandstone / shale bedrock. Laboratory analytical results for the contaminants of potential concern (COPCs) in representative soil samples were found to comply with the adopted investigation (acceptance) levels, except for asbestos in the filling at locations BH3 and BH10M. One groundwater monitoring event (GME) was performed for this DSI, utilising the installed wells BH1M, BH4M, BH7M, BH10M and BH13M. Standing water levels (SWLs) ranged from 14.35 to 18.25m AHD (<2m BGL). The representative samples were found to contain concentrations of copper, nickel and zinc that exceeded the adopted groundwater investigation levels (GILs). However, they were considered representative of background conditions for the Sydney (urban) environment and therefore not posing any immediate risks.
Conclusions and Recommendations	El concluded that widespread contamination was not present on this part of the site. The land could be remediated for mixed residential/commercial purposes, subject to the implementation of a RAP that addressed the removal of the diesel UPSS (i.e. the tank, bowser, feed lines and vent pipes), as well as all asbestos-impacted filling.
Detailed Site Investig	nation (El, 2018b)
Objective	The primary objective of this investigation was to determine the degree of any potential contamination on the northern part of the site (5480m ²), by means of intrusive sampling and laboratory analysis for relevant contaminants. If contamination was confirmed, secondary objectives were to evaluate the risks posed to human health and the environment and confirm whether remediation was warranted.
Key Findings	 Soil profiling and sampling were conducted at fourteen borehole locations (BH101-BH114), constructed to a maximum depth of 8.2m BGL. The sampling regime followed a mixed judgemental and systematic (triangular grid) pattern, with allowance for structural obstacles. The sub-surface layers were comprised of heterogeneous (anthropogenic) clayey, gravelly, sand fill materials (0.3-1.3m thickness), underlain by residual clays of low to high plasticity and (weathered) shale bedrock. Laboratory analytical results for the COPCs in representative soil samples were found to comply with the adopted investigation (acceptance) levels, except: BH105_0.3-0.4 exceeded the ecological investigation level (EIL) for copper (150 mg/kg) and zinc (270 mg/kg); and BH108M_0.4-0.5 exceeded the EIL for zinc (210 mg/kg) and >C₁₀-C₁₆ (F2) total recoverable hydrocarbons (TRH; 130 mg/kg). One GME was performed for this DSI, utilising the wells installed at BH101M, BH108M and BH112M. SWLs ranged from 2.98 to 3.90m BGL. The representative samples were found to contain concentrations of copper, nickel and/or zinc that exceeded the adopted GILs. However, they were considered representative of background conditions for the Sydney (urban) environment and therefore not posing any immediate risks.
Conclusions and Recommendations	El concluded that widespread contamination was not present on this part of the site, with the land being seen as suitable for residential purposes (with minimal access to soils). Remediation was not deemed to be warranted, subject to the findings of recommended data gap closure investigations, namely the assessment of the quality of (fill) soils beneath buildings and pavements not accessible at the time of the DSI (e.g. 17 Brighton Avenue).

3.3 CONCEPTUAL SITE MODEL (CSM)

In accordance with NEPC (2013) *Schedule B2 - Guideline on Site Characterisation*, EI developed a conceptual site model (CSM), assessing plausible linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for determining the reliability and useability of the collected data and identifying gaps in the site characterisation.

3.3.1 Subsurface Conditions

The lithology of the site was generalised as heterogeneous fill materials (0.3-1.3m thickness), underlain by residual clays and weathered shale bedrock.

3.3.2 Contamination Sources

The potential contamination sources were:

- Imported fill soils of unknown origin;
- Historic commercial activities (including a diesel UPSS in the south western corner); and
- Weathering of hazardous materials in the existing building fabrics, including asbestos-containing materials (ACMs), lead-based paints and metallic surfaces.

3.3.3 Chemicals of Concern

The following contaminants were of concern for site remediation (i.e. asbestos and UPSS) and data gap closure (i.e. further assessment of building footprints and pavements):

- Soil (remediation areas) heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), TRHs, volatile organic compounds (VOCs; including the monocyclic aromatic hydrocarbons benzene, toluene, ethylbenzene and xylenes (BTEX)) and asbestos.
- Soil (building footprints and pavements) heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), TRHs, VOCs (including BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine and organophosphorus pesticides (OCPs/ OPPs), polychlorinated biphenyls (PCBs) and asbestos.

3.3.4 Potential Sources, Exposure Pathways and Receptors

The potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this RAP are summarised in **Table 3-2**.

Contaminated Media	Transport Mechanism	Exposure Pathway	Potential Receptor
Soils	Direct exposure to contaminated soils	Ingestion, dermal contact and inhalation	Future construction and maintenance workers
		Plant uptake	Future tenants
			Ecological receptors
Groundwater Direct exposure to contaminated groundwater (onsite)		Dermal contact and ingestion of contaminated groundwater	Future construction and maintenance workers
	(onsite)		Future tenants
		Ecological receptors	
	Migration of contaminated	Discharge of contaminants	Offsite receptors
ground	groundwater (offsite)	-	(unlicensed bores)
			Ecological receptors (Cooks River)

Table 3-2 Conceptual Site Model

3.4 EXISTING SITE CONTAMINATION

Based on the information from the previous EI (2016, 2018a and 2018b) reports, the following contamination issues were of relevance to the site:

• A diesel UPSS in the south western site corner;

• Asbestos-impacted filling in the vicinities of investigation bores BH3 and BH10M.

This is subject to modification, depending on the findings from any further intrusive (data gap closure) investigations.

3.5 DATA GAPS

The current CSM was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. However, the following data gaps required closure as part of the site remediation / validation phase:

- delineation of the identified asbestos hotspots (i.e. BH3 in north western portion of 27-33 Brighton Avenue and BH10M in the south eastern portion of 27-33 Brighton Avenue, the latter coinciding with the south eastern site corner);
- further assessment of (beneath) the building footprints and pavements not accessible at the time
 of the investigation phase; and
- Waste classification of site (fill) soils, to assist the off-site disposal of (contaminated) materials during the remediation phase.

3.6 EXTENT OF REMEDIATION REQUIRED

Based on the available site characterisation data, removal of the diesel UPSS and remediation of the asbestos-impacted filling materials in the vicinities of investigation bores BH3 and BH10M were required to render the site suitable for its intended use.

4 DATA QUALITY OBJECTIVES

In accordance with the US EPA (2006) *Data Quality Assessment* and the EPA (2017) *Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme*, Data Quality Objectives (DQO) will be used to confirm the quality of the data needed for the specific data requirements of the project. The DQO process for this RAP is documented in **Table 4-1**.

Table 4-1 Summary of Project Data Quality Objectives

DQO Step	Details	
1. State the Problem Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual site model.	Following rezoning in accordance with the Planning Proposal, the site is to be developed for mixed purposes (multiple, 4 to 5 storey, mixed commercial and residential apartment buildings, with 1 to 2 level basement). The previous DSIs identified a UPSS and asbestos-contaminated filling, contributed by various potential sources listed in Section 3.3.3 . A CSM has been developed (Section 3). Validation (and any additional / data gap closure investigation) sampling must provide supportive information on the environmental conditions of the site, to determine its suitability for the proposed development.	
2. Identify the Goal of the Study (Identify	Based on the objectives outlined in Section 1.3, the following decisions are identified:	
the decisions)	Has the nature, extent and source of any soil, vapour and/or groundwater impacts been defined?	
Identify the decisions that need to be made	• What impact do the (hydro)geological conditions have on the fate and transport of any impacts that may be identified?	
on the contamination problem and the new environmental data required to make them.	• Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on- or off-site?	
	• Will soils and groundwater require further remediation and/or special management before the site can be used for a variety of purposes?	
3. Identify Information Inputs (Identify	Inputs to the decision making process include:	
inputs to decision)	The previous investigations, summarised in Section 3;	
Identify the information needed to support	 National and state guidelines made or approved by the NSW EPA under Section 105 of the CLM Act 1997; 	
any decision and specify which inputs require new environmental measurements.	Additional soil sampling and laboratory analytical results for waste classification purposes and/or data gap closure;	
	 Sampling from stockpiled soil material for waste classification assessment; 	
	Soil validation sampling of remedial excavation surfaces;	
	Laboratory analytical results of soil validation samples; and	
	Assessment of analytical results in relation to the remediation criteria.	
	At the end of the remediation, a decision must be made regarding whether the environmental conditions are suitable for the proposed land zoning (and development), or if additional investigation or remedial works are required to make the site suitable.	
4. Define the Boundaries of the Study	Lateral – The cadastral boundaries of the site (Appendix A).	
Specify the spatial and temporal aspects of the environmental media that the data must	Vertical – From the existing ground surface, underlying fill and natural soil horizons, to the base of the proposed basement and any locally deeper areas (for piling, service trenches etc.).	
represent to support decision.	Temporal – Results are valid on the day of data and sample collection and remain valid as long as no changes occur on-site and/or contamination (if present) does not migrate on-site or on to the site from off-site sources.	

DQO Step	Details
5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions.	 Laboratory analytical results will be accepted if: All contracted laboratories are accredited by NATA for the analyses undertaken; All detection limits fall below the remediation criteria; Analyte concentrations in rinsate (i.e. blank) samples do not vary significantly from concentrations in the distilled water used for equipment rinsing; Relative percentage differences (RPDs) for duplicate samples are within accepted limits; and Laboratory QA/QC protocols and results comply with NEPM requirements. Further decisions are also required following the additional (data gap closure) assessment. This may require updating of the RAP to include additional soil areas and/or groundwater remediation / management.
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors)	Specific limits for this project are to be in accordance with the National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This should include the following points to quantify tolerable limits:
Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data.	 The null hypothesis for the remediation of soils is that the 95% UCL for each contaminant of concern exceeds the adopted remediation criterion; The acceptance of the site as validated will be based on the probability that: Each 95% UCL will satisfy the given criterion, hence, a limit on the decision error will be 5% that a conclusive statement may be incorrect; and Each standard deviation is less than 50% of the relevant remediation acceptance criterion; and No single result exceeds the acceptance criterion by 250% or more; and Soil concentrations for chemicals of concern that are below investigation criteria made or approved by the EPA will be treated as acceptable and indicative of suitability for the proposed land use(s).
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs.	 Written instructions will be issued to guide field personnel in the required fieldwork activities. Soil remedial excavation is to be performed as per Section 7, within areas pertaining to any contamination hot spots identified previously and during additional investigations. Soil validation sampling is to be completed as per the methodology prescribed in Section 9. Validation sampling procedures will be implemented to optimise data collection for achieving the DQOs. Review of the results will be undertaken to determine if further excavation and/or additional sampling is warranted. Additional investigations would be necessary where soil concentrations are found to exceed remediation criteria endorsed by the EPA, relevant to the proposed land zoning (and future development).

5 REMEDIATION GOALS AND CRITERIA

5.1 REMEDIATION GOALS

The remediation goals for this RAP are consistent with NSW EPA *SEPP 55* guidelines and Council's contaminated land policy, and include:

- Identifying the data gaps that require closure and could be performed as part of the site remediation / validation phase;
- Meeting the conditions of the planning consent, to render the site suitable for the proposed land use(s);
- Demonstrating that the proposed remediation strategy for the site is environmentally justifiable, practical and technically feasible;
- Adopting clean-up criteria appropriate for the future use of the site to mitigate possible impacts to human health and the environment;
- Mitigating possible off-site migration of contaminants (including migration in existing utilities such as the sewer, stormwater and other subsurface pipes or service trenches);
- Consideration of the principles of ecologically sustainable development, in line with Section 9 of the *Contaminated Land Management Act 1997*;
- Minimising waste generation under the Waste Avoidance and Resource Recovery Act 2001;
- Remediating all contamination within the site so there are no unacceptable risks to on- and offsite receptors;
- Remediating the site to a condition where any residual contamination does not require long-term management using an environmental management plan (EMP); and
- Demonstrating that the plans for management of remediation work consider work health and safety, environmental management, community relations and contingencies.

5.2 **REMEDIATION CRITERIA**

5.2.1 Soil and Groundwater Remediation (Validation) Criteria

In accordance with the Planning Proposal requirements, the soil and groundwater remediation criteria outlined in **Table 5-1** will be adopted, to confirm suitability of the site for the proposed land zoning (and development). These are based on NEPC (2013) *Schedule B1 Guideline on Investigation Levels for Soil and Groundwater*.

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPC (2013) Soil HILs, HSLs, EILs, ESLs and Management Limits for TRHs	 Soil Health-based Investigation Levels (HILs) All soil samples to be assessed against the NEPC (2013) <i>Health</i> <i>Investigation Limits (HIL)</i> relevant to the future proposed development including HIL-A and HIL-B thresholds for residential sites, HIL-C for recreational open space land use settings and HIL-D for commercial and industrial sites. Soil Health-based Screening Levels (HSLs) The NEPC (2013) <i>Health-based Screening Level (HSL)</i> thresholds for vapour intrusion will be applied to assess potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene to residential sites (HSL-A&B), recreational open space land use settings (HSL-C) and commercial/industrial (HSL-D). Soil asbestos results to be assessed against the NEPC (2013) thresholds for "all forms of asbestos". Ecological Investigation / Screening Levels (EILs / ESLs) Soil samples from proposed landscaped and recreational areas to be assessed against the NEPC (2013) <i>EILs</i> and/or <i>ESLs</i>, for guidance purposes. Management Limits for Petroleum Hydrocarbons Should the <i>HSLs</i> and/or <i>ESLs</i> be exceeded for petroleum hydrocarbons, soil samples will be assessed against the corresponding NEPC (2013) <i>Management Limits</i>, to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards and adverse effects on buried infrastructure.
Groundwater	NEPC (2013) GILs for Marine Waters	Groundwater Investigation Levels (GILs) for Freshwater NEPC (2013) provides GILs for slightly-moderately disturbed aquatic ecosystems, which are based on the ANZG (2018) <i>Trigger Values</i> for 95% level of protection of aquatic ecosystems. The <i>99% Trigger Values</i> to be applied for the bio-accumulative metals cadmium and mercury. The marine criteria were considered relevant as the closest surface water receptor was Cooks River (tidally influenced).
	NEPC (2013) Groundwater HSLs for Vapour Intrusion	Health-based Screening Levels (HSLs) The NEPC (2013) <i>HSLs</i> for vapour intrusion will be used to assess potential human health impacts from residual petroleum, BTEX and CVOC contamination to residential sites (HSL-A&B), recreational open space land use settings (HSL-C) and commercial/industrial (HSL-D).

Table 5-1 Soil and Groundwater Remediation Criteria

The adopted soil and groundwater remediation criteria are tabulated in **Appendix D** (**Table D-1**, **Table D-2**, **Table D-3** and **Table D4**). Conformance with the soil remediation criteria will have been attained when soil validation samples from similar lithology and depth show contaminant concentrations that are below the specified thresholds, or, as a minimum, the 95% upper confidence limit (UCL) mean concentration for each contaminant in the soil remediated area (i.e. across the excavated surface) is below the respective threshold.

As stated in **Section 1.1**, this RAP has been prepared to accompany a Planning Proposal, outlining the remediation strategy that will render the site suitable for all permissible uses applicable to the new zone (that being *R4 High Density Residential*, as classified under the *Canterbury Local Environmental Plan 2012*).

6 REMEDIATION TECHNOLOGY

6.1 **REGULATORY OVERVIEW**

Volume 1, Section 16 of the NEPC (2013) guidelines indicates that the preferred hierarchy for site remediation options and/or management should be:

- On-site treatment of the contamination, so that it is destroyed or the associated risk is reduced to an acceptable level; and
- Off-site treatment of excavated soil, so that the contamination is destroyed or the associated risk is reduced to an acceptable level, after which soil is returned to the site; or, if the above are not practicable:
- Consolidation and isolation of the soil on site by containment with a properly designed barrier; and
- Removal of contaminated material to an approved site or facility, followed, where necessary, by replacement with appropriate material; or
- Where the assessment indicates remediation would have no net environmental benefit or would have a net adverse environmental effect, implementation of an appropriate management strategy.

When deciding which option to choose, the sustainability (environmental, economic and social) of each option should be considered, in terms of achieving an appropriate balance between the benefits and effects of undertaking the option.

For this site, a number of remediation options were reviewed to examine the suitability of each method, the surrounding properties, geological and hydrogeological limitations and the following considerations:

- Development requirements (Planning Proposal requires approach to be applicable for all permitted uses as per **Section 1.1**);
- Prioritisation of works in areas of most concern;
- Ability of remedial method to treat contamination with respect to material and infrastructure limitations;
- Remedial timetable;
- Defensible method to ensure the land is remediated to appropriate levels / validation criteria; and
- Regulatory compliance.

6.2 REMEDIAL TECHNOLOGIES REVIEW

A number of soil (and groundwater) remediation options were reviewed to examine the suitability of each method, with due regard for the surrounding land uses, as well as the geological and hydrogeological limitations.

Brief discussion on the various remediation technology options is provided in **Appendix E**. Each of the available remediation technologies, are summarised in terms of their suitability for treatment of soils and groundwater in **Table 6-1**.

Table 6-1 Remedial Technology Review - Soils

Remediation methodology	Description	Advantages	Disadvantages	Suitability
No Action	 'No Action' can be considered if: there is no measurable contamination; contaminant concentrations are below assessment guidelines; contaminants are not mobile; or exposure to contaminated soils is unlikely. 	No remediation costs Creates minimal disturbance to the site Retains material on-site	Not applicable to the kind of contamination encountered within the site. Contamination would remain <i>in situ</i> allowing potential vapour intrusion and off-site migration of contamination and impacts on groundwater. Would pose limitations on land use options. May require an EMP and ongoing monitoring.	Not Suitable – the key objective of the remedial strategy is to make the site suitable for a variety of end uses. ACMs must be dealt with.
On-site bioremediation	Excavated soils are thoroughly broken down and aerated, mixed with microorganisms and nutrients, stockpiled and aerated in above ground enclosures.	Cost effective if soils are utilised on- site. Lower disposal costs. Limited requirement to import fill material to site. Retains material on-site.	Significant area required to land farm material. Undefined remediation timeframe. Potential for odour problems. Not suitable for asbestos contamination.	Note Suitable – soils impacted with heavy metals and asbestos would not be remediated. Insufficient area is available across the site for this method (once basement excavation commences).
In-situ treatment	<i>In-situ</i> treatment of impacted soils within the smear zone and saturated zone using <i>in- situ</i> treatment methods such as soil vapour extraction, injection of oxidising agents etc.	Creates minimal disturbance to the site (no excavation). Cost effective for large scale site remediation of light to mid-weight petroleum hydrocarbons. Potential to simultaneously remediate dissolved phase hydrocarbons in site groundwater.	Not applicable to the kind of contamination encountered within the site. Expensive establishment costs. Potential for odour problems. Requires detailed design, pilot trials and management.	Not suitable – this method is designed for widespread, volatile hydrocarbon impacted soils. Since the present dataset provides evidence of other (non-volatile) contamination, this is not considered to be an economically viable option.

Remediation methodology	Description	Advantages	Disadvantages	Suitability
Consolidation and/or capping	Risk minimisation approach where impacted soils are	Effectively removes risk to human health by eliminating exposure	Importance of capping / membrane materials.	Suitable – will meet the key project objective to make the land suitable
	managed on-site by capping the ground surface with a clean, impermeable layer of fill material, or polymeric	pathways.	Contamination would remain <i>in situ</i> allowing potential off-site migration of contamination and impacts on groundwater.	for a variety of end uses, at least for residual (non-volatile) contamination. Best suited as a secondary option, in combination
	membrane.		Would pose limitations on land use options.	with the following, especially where waste disposal costs become an issue.
			Typically requires an EMP and ongoing monitoring.	15500.
Excavation and Excavate impacted materials. off-site disposal Transport directly to a licensed	Fast – impacted material removed immediately, significantly reducing	Transfer of waste to another location (licensed waste facility).	Suitable – will meet the key project objective to make the land suitable	
	landfill facility. Reinstate site with imported clean fill material.	potential for impact to groundwater.		for a variety of end uses.
		No storage or treatment problems.		This will remove potentially leachable contamination sources and prevent vertical migration to the groundwater system. Bulk excavation required for 1 to 2
		mpacted materials removed from Requires waste cla	Requires waste classification prior to disposal, keeping of thorough waste	
		Minimal design and management		
	costs.	Sustainability issues related with disposal to landfill.	level basement construction.	
Natural attenuation	Allowing the contaminants to	No remedial excavation of site.	Slow process.	Not Suitable – this approach is
biodegrade naturally following removal of the contamination source.	Retains materials on site.	Not applicable to metal contamination.	primarily suited to addressing	
		Sustainable, cost effective remediation method.	Potential for contamination to further impact on the groundwater aquifer and nearby environmental receptors.	groundwater contamination; the approach would not address the identified soil impacts.
			Typically requires an EMP and ongoing monitoring.	

Further consideration may be required to assess whether the groundwater and/or impacted soils around any hotspots require further management or remediation if volatile hydrocarbons are recorded at levels suggesting vapour intrusion into ground floors.

6.3 PREFERRED REMEDIATION OPTION

Based on the assessed remedial technologies (including their relative cost effectiveness), the proposed development (a variety of end uses) and the potential risks to human health and the environment, the preferred remedial option for the site is:

• Off-site disposal of UPSS infrastructure and impacted soils to licensed waste facilities.

All wastes shall be transported to appropriate, EPA-licensed facilities, after formal classification. All excavated (remediation) areas shall be validated.

The alternative option of consolidation / capping of contamination shall be considered as a secondary option, in combination with the above, especially where waste disposal costs become an issue.

6.4 SITE PREPARATION, LICENCES AND APPROVALS

6.4.1 Consent Requirements

In accordance with the EPA (1998) *SEPP 55 - Remediation of Land*, the category of the remediation works defines whether consent is required prior to their commencement. Under *SEPP 55*, works where there is the potential for significant environmental impact are classed as Category 1 and require development consent. Category 2 works pose a low potential for environmental impact and do not therefore require prior consent. The determination for the subject site is outlined in **Table 6-2**.

Significant Environment Impact	Yes/No	Category
Designated Development or State Significant Development	No	2
Critical or threatened species habitat	No	2
Significant impact on threatened species, populations, ecological communities or their habitats	No	2
In area identified environmental significance, such as scenic areas, wetlands (see list*)	No	2
Comply with a policy made under the contaminated land planning guidelines by the council	Yes	2
Is work ancillary to designated development	Yes	2

Table 6-2 Remediation Works Category Determination

* Environmental significance list - coastal protection, conservation or heritage conservation, habitat area, habitat protection area, habitat or wildlife corridor, environment protection, escarpment, escarpment protection or escarpment preservation, floodway, littoral rainforest, nature reserve, scenic area or scenic protection, or wetland.

Based on the above assessment, the proposed remediation works for the site are considered Category 2 and will not require development consent. Category 2 works do, however, <u>require</u> <u>notification</u> to the consent authority; therefore, Council must be notified <u>30 days before</u> <u>commencement</u> of the works. The 30-day limit does not prevent Council intervention after that time for a breach of the EPA Act 1997 or non-compliance with *SEPP 55*. The notification also serves as the basis for updating Council records on properties in the local government area and must:

- Be in writing;
- Provide contact details for the notice;
- Briefly describe the remediation work;
- Show why the work is considered category 2 remediation work;
- Specify the property description and street address on which the remediation work is to be carried out;

- Provide a location map; and
- Provide estimates for commencement and completion dates of the work.

Provision of an RAP, as well as an indication of work commencement and completion dates in writing, is usually sufficient to meet the requirements of this notification.

6.4.2 Development Consent and Control Plans

All works should be in accordance with the *Canterbury DCP 2012* and any consent conditions issued by Canterbury-Bankstown Council for the proposed (approved) development.

6.4.3 Other Licence Requirements

The appointed contractor should prepare an appropriate CEMP and WHSP, as well as any other plans required under the Council DA and DCP. Where asbestos removal is required, the contractor must be appropriately licensed to perform such works, which must be conducted in accordance with a specific Asbestos Management Plan (AMP).

7 REMEDIATION WORKS

7.1 **REMEDIATION STRATEGY**

Following approvals and site establishment, the main remediation works will include, but not necessarily be limited to:

- Stage 1 Additional Investigation for Data Gap Closure;
- Stage 2 Site Preparation;
- **Stage 3** Ground Surface Inspection;
- Stage 4 UPSS Excavation and Disposal;
- Stage 5 Handling and Management of Fill Soil for Off-site Disposal;
- Stage 6 Site Validation and VENM Classification;
- **Stage 7** Validation Report Preparation.

Contingent Action

Should unexpected finds be discovered during the course of the remediation program, or should any phase of validation identify high level, residual contamination requiring additional remediation, then the procedures described under the Unexpected Finds Protocol (**Section 8.6**) and/or the Validation Plan (**Section 9**) will be implemented. This will continue until the remediation goals have been achieved and the site is deemed suitable for the intended land use.

7.2 REMEDIATION METHODOLOGY

7.2.1 Stage 1 – Additional Investigation for Data Gap Closure

Supplementary investigations to close the data gaps identified in **Section 3.5** are to be implemented. This will involve:

- Inspection and soil sampling of (building) areas with ACMs on the surface, if encountered;
- Soil sampling at a density that ultimately complies with the minimum density recommended under the EPA (1995) *Sampling Design Guidelines*, focusing on the former building footprints and pavements (e.g. 17 Brighton Avenue);
- Delineation of the asbestos-impacted areas (i.e. the vicinities of EI (2018a) sampling locations BH3 and BH10M);

A minimum of four sampling locations is recommended per hotspot (within 2-5m radius)

• Sample analyses for the identified contaminants of concern (Section 3.3.3).

7.2.2 Stage 2 – Site Preparation

Notice will be given to Council at least 30 days prior to the commencement of remediation works. A list of all required work permits will be obtained from Council and arrangements are to be made to obtain the necessary approvals from the relevant regulatory authorities.

The site will be prepared in accordance with the requirements of the Site Management Plan outlined in **Section 8**. The property developer will also need to implement a Construction Environmental Management Plan (CEMP), Work Health and Safety Plan (WHSP) and Asbestos Management Plan (AMP) prior to any works. Frameworks for CEMP, WHSP and AMP requirements are outlined in **Section 8**. Establishment of environmental controls, site access, security, fencing and warning signage and the preparation of the CEMP, WHSP and AMP are required prior to works

commencement. A project plan should also be developed to outline engineering design for excavation support (if required), water treatment requirements and design, staging of excavation works, stockpiling, waste stabilisation, waste material loading, traffic management and waste tracking.

As part of the preparation phase, a remediation workshop will be conducted with the appointed contractor(s) to further develop any remedial measures, excavation plans and environmental management requirements.

Also prior to commencing work, each contractor is to prepare a staging or project plan that outlines the basic stages of the remediation works. The staging plan should include, but not necessarily be limited to:

- Staging of areas to be excavated;
- Areas designated for waste segregation, screening and storage (stockpiling), amenities, soil and groundwater treatment (if required);
- Truck movement to allow loading and mitigate impacts to surrounding land users and council infrastructure; and
- Proposed environmental mitigation measures.

7.2.3 Stage 3 – Ground Surface Inspection

After site preparation, including the removal of any pavements, an inspection of the exposed ground surface must be undertaken by qualified persons, to survey for underground tanks (i.e. ground penetration radar by a licensed services locator), confirm the absence of ACMs (e.g. fragments) and check for evidence (previously unidentified hotspots) of potential contamination. At least one underground tank is present in the south western site corner.

Emphasis shall be given to former building area(s) and pavements. Additional characterisation of soils will be performed, as deemed appropriate. The analytical results would be combined with the existing data set to assist the waste classification of site (fill) soils designated for disposal, as well as evaluation against human-health acceptance criteria applicable for each relevant end use exposure setting.

7.2.4 Stage 4 – UPSS Excavation and Disposal

Based on the investigation phase findings, at least one UPSS is present on the site, in the south western site corner (**Section 3.2**). The *Site Preparation* and *Ground Surface Inspection* stages will assist in establishing whether any other (abandoned) systems are present.

Any underground tank infrastructure, including tanks, anchors, fuel feed lines, air vent pipes and direct or remote fill points will require decommissioning and removal as part of the site remediation process.

Decommissioning

Residual fuel and flammable liquids, and fuel/solvent/water mixtures may be present within the tank and product lines. Any liquid waste remaining within site infrastructure should firstly be drained and classified for disposal purposes, as defined in EPA (2014a/b). The liquid waste must be removed from site by a licensed liquid waste transporter and disposed to a suitably licensed liquid waste facility. The contractor shall provide appropriate documentation for waste disposal.

A SafeWork NSW licensed and experienced tank removal contractor must be engaged to manage the tank and infrastructure removal process, in accordance with the Australian Standard for the removal and disposal of underground petroleum storage tanks (AS4976 - 2008), SafeWork NSW guidelines and the *Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2019* (the 'UPSS Regulation'). SafeWork NSW should be notified within 7 days of the

removal of any UPSS. Where buried UPSSs are discovered, these will be targeted for decommissioning and offsite destruction in accordance with SafeWork NSW guidelines and the UPSS Regulation.

The contractor is to record the condition of any tanks and associated infrastructure, and provide documentary evidence on destruction of the USTs for final validation report.

Remedial Soil Excavations

Following decommissioning and removal, contaminated soils may be found in vicinity of the tank and associated lines, including the former bowser area. Such materials will require separate management from the remainder of the site, via remedial excavations, followed by waste classification and off-site disposal. The general procedure is as below.

- Any infrastructure, residual product and liquid in the excavation area should be removed in accordance with the procedure described above. Localised deep excavations (sumps) may be created within the area to allow perched groundwater to drain to the sumps. The accumulated liquid will be removed by an appropriately licenced liquid waste removal contractor for appropriate disposal and /or recycling, after on-site treatment (if necessary).
- "Chase-out" excavation of walls and base of the area, with regular field screening of soil headspace samples using a calibrated photoionisation detector (PID). Materials exhibiting unusual odour, staining and / or PID reading >30ppm will be stockpiled separately for waste classification. Excavation should not jeopardise the stability of adjoining properties and structures. The open excavation pits should be clearly demarcated with star pickets and tapes.
- "Chase-out" excavation should continue until all walls and base of the excavation are observed to be free of odour and staining and PID reading of headspace sample are less than 30ppm. Validation samples will be collected for laboratory analysis, from the base and side walls of the final remedial excavations, in accordance with EPA (2014a) *Technical Note: Investigation of Service Station Sites*. Further details are discussed in **Section 9**.
- Spoils from remedial excavations are to be stockpiled separately from other site fill / soils, for *ex-situ* waste classification assessment. General management requirements of stockpiles on site are described in **Section 8.2**.
- Stockpiles resulting from remedial excavations will be visually inspected, sampled and analysed for waste classification in accordance with Section 7.5 of Schedule B2 in NEPC (2013) and EPA (2014b) *Waste Classification Guidelines*:
 - Collection of one sample per 25m³ of stockpiled materials, up to 250m³. A minimum of three samples is required for any stockpile. For stockpiles >250m³ but <2500m³ in size, a statistical analysis approach may be used with the collection of 10 samples.
 - The analytical suite for waste classification will include the 8 priority metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), TRHs, BTEX, PAHs, OCPs, OPPs PCBs and asbestos, and any additional chemicals of potential concern that may be identified during site remediation (e.g. CVOCs).
- Waste classification certificates will be prepared for stockpiles, which will be transported and disposed to appropriately licensed waste landfill facilities, according to their classification. General material handling and management requirements are discussed in Section 8.2. Waste disposal documentation will be maintained by the site contractor and provided to the environmental consultant for reporting purposes.
- Validation of voids following remedial excavation of UPSS and associated contaminated soil should be undertaken according to the validation plan provided in **Section 9**.

7.2.5 Stage 5 – Handling and Management of Fill Soil for Offsite Disposal

Waste classifications for individual, excavated fill stockpiles will be determined from previous investigation results and additional sampling and testing to confirm which materials are classified as *Hazardous Waste / Restricted Solid Waste / Special Waste - Asbestos Waste / General Solid Waste.*

The procedure for the assessment and offsite disposal of near-surface (topsoil) fill, including that from the vicinities of BH3 and BH10M, will be as follows:

- 1. Site fill will be screened to remove coarse (>75 mm fraction) materials.
- The coarse fraction will be inspected for ACM, with manual removal and bagging of ACM fragments if identified, followed by loading onto licensed transport vehicles and appropriate offsite recycling or disposal as construction / demolition waste (Note: Any collected ACM will be doublebagged and assigned for appropriate disposal by a licensed asbestos contractor as *Special Waste – Asbestos Waste*).
- 3. After the removal of the coarse >75 mm screened fraction, remaining fill soils will be stockpiled as individual (physically separate) stockpiles each containing not more than 250m³ of fill.
- 4. Fill materials will be stored on impermeable surfaces (such as remaining hardstand or a plastic liners) and re-assessed to produce final waste classifications, which will be used to determine the appropriately licensed waste landfill facility able to receive the materials.
- 5. Any fill exhibiting heavy staining and/or odours is to be isolated from other excavated materials, for separate waste classification sampling and testing.
- 6. A waste classification assessment will be performed on each fill stockpile using the following procedure:
 - Collect one sample per 25m³ of stockpiled material for the fill/soils produced by any excavation;
 - Collect one intra-laboratory duplicate for every 10 primary samples collected and one interlaboratory duplicate for every 20 primary samples collected;
 - Collect one rinsate blank per sampling round;
 - Using NATA-registered laboratory methods, analyse each sample for eight heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), TRHs, VOCs (including BTEX and CVOCs), PAHs, OCPs, OPPs, PCBs and asbestos identification, with TCLP testing of the two highest metals and PAH results for leachability assessment; and
 - Prepare a Waste Classification Certificate for each category of soil waste, to enable appropriate off-site disposal of all fill stockpiles.
- 7. After waste characterisation sampling (while waste classification testing is taking place), fill stockpiles should be protected from wind to avoid airborne dispersion of dust.
- 8. Ensuring that the waste fill/soil stockpiles are kept separate in order to maintain the integrity of each separate waste stream, stockpiles will be loaded, transported and disposed offsite to waste landfill facilities that are appropriately licensed to receive the materials corresponding to the documented waste classifications.
- 9. In accordance with the *Waste Regulation 2014*, waste movements will be tracked and disposal receipts (dockets) will be maintained by the site manager, with copies provided to the appointed Environmental Consultant for final reporting purposes.

Remedial excavations should be conducted under the supervision of a suitably qualified environmental professional. Appropriate dust control measures must be implemented during

excavation of soil material at the site, as described in **Section 8**. Should odours be significant enough to cause nuisance at a site boundary, then measures for odour control must be adopted, as described under the unexpected finds protocol in **Section 8.6**.

Hotspot Remediation

Localised hotspots of soil contamination (e.g. BH3 in north western portion of 27-33 Brighton Avenue and BH10M in the south eastern portion of 27-33 Brighton Avenue) will be remediated using the following procedure:

- 1. Mark out the hotspot area (as determined by Stage 1 delineation works). The extent of the impact should be marked in a way to withstand external conditions and should be readily identifiable during the entire remedial works program, to enable contaminated soil chase-out excavations and revalidation, if necessary.
- 2. Plant, machinery and / or other equipment used for the excavation works should be dedicated to the individual excavation, and should be clean and free of all solid materials prior to the start of remedial excavation works.
- 3. Hotspot fill/soils, which have been classified under the same waste category will be excavated and directly loaded onto the same transport vehicle.
- 4. Under the *NSW Waste Regulations 2014*, different waste streams must be kept separate. <u>Hotspot soils with different waste classifications cannot be loaded onto the same waste</u> <u>transport vehicle, for landfill disposal purposes</u>.
- 5. Should the temporary stockpiling of excavated, contamination hotspot soils be necessary, <u>soils</u> <u>from different areas must be stockpiled separately</u> and isolated from all other excavated materials, on an impermeable surface (such as a plastic liner). Stockpiles should also be protected from wind to avoid airborne dispersion of dust.
- 6. Any soils with heavy staining and/or exhibiting odours are to be isolated from other excavated materials, for additional waste classification sampling and testing.
- 7. Validation samples will be collected from excavation surfaces (minimum four walls and one base) for laboratory analysis of the contaminant (or group of contaminants) for which the respective area is being remediated (BH3 and BH10M remediation areas: asbestos).
- 8. Should any wall or base validation sample from any hotspot remedial excavation be found to contain contaminant concentrations that exceed the adopted soil validation criteria, additional chase-out excavations will be conducted to remove more fill from the area of residual impacts, followed by resampling for revalidation testing.
- 9. When all wall and base validation samples show results that are below the adopted validation criteria, the hotspot area will be deemed as effectively remediated.

7.2.6 Stage 6 – Site Validation and VENM Classification

Validation of In Situ Natural Soils

All contaminated (fill) soil needing to be remediated must be removed from the site and a validation assessment of freshly exposed soil must be completed prior to the commencement of further bulk excavation works. Natural soil is potentially classifiable as *virgin excavated natural material* (VENM); however, inspection and validation by near surface sampling and analysis are required. A validation plan is outlined in **Section 9**.

Where impact is identified in natural soils, the impact would be remediated and validated in accordance with the remedial excavation procedures described in Stage 5 above (**Section 7.2.5**). The resulting spoils will be assessed and classified in accordance with EPA (2014b) *Waste Classification Guidelines*.

Validation of Imported Backfill Soils

Should reinstatement (backfilling) of remedial excavations require importation of soils from off-site source(s), the imported materials must be certified as meeting the VENM classification, prior to importation. To deem soils suitable for use on the subject site, the following confirmation procedure should be undertaken:

- All imported soils brought to the site should be certified as VENM by the supplier;
- No soil or rock is to be imported onto the site for backfilling purposes, unless the supporting documentation is approved and the materials are inspected by the appointed environmental consultant; and
- Where certification cannot be provided, the imported materials must be validated in accordance with the procedure outlined in **Section 9.1**.

Validation of Local Groundwater

At least one groundwater monitoring event (GME) is to be undertaken during the remedial program, in order to assess the local conditions and inform any additional remediation and management measures required during the excavation program. The GME should involve sampling and analysis of water in the existing / protected monitoring wells (southern wells: BH1M, BH4M, BH7M, BH10M and BH13M; northern wells: BH101M, BH108M and BH112M); otherwise, new groundwater monitoring well(s) may need to be installed for this purpose. A SAQP for the/each GME is provided in **Table 7-1**.

ltem	Description
Groundwater Sampling Location and Methodology	Utilise existing monitoring wells – to be protected during the site demolition and preparation stages. New groundwater monitoring wells, if necessary, should be constructed, developed and sampled in accordance with NSW EPA endorsed standards. The low-flow sampling method should be used where possible.
Rationale	The proposed sampling program will involve wells located inside the site boundary, to enable assessment of potential influence from the site on migrating groundwater quality and delineation of the point of contamination.
Well Development	All groundwater monitoring wells should be developed prior to sampling.
Analytical Suite	Heavy metals, TRHs, VOCs (including BTEX and CVOCs) and PAHs.
Sample Handling, Transport and Tracking	Containers will be labelled with individual and unique identification including Project No., Sample No., date and time of sampling. Collected samples will be stored in chilled, enclosed and secure containers for transport to laboratories. Chain of custody documentation will be completed to ensure that sample tracking and custody can be cross-checked at any point in the transfer of samples from the field to the environmental laboratory.
Sample Containers and Holding Times	 Sample handling, transportation and tracking should be in accordance with NEPC (2013) and typically will comprise: TRHs (>C₁₀-C₄₀) and PAHs – 1 litre amber glass / acid-washed and solvent-rinsed bottle / refrigeration 4°C / 7 days; TRH (C₆-C₁₀), VOCs and BTEX – two, 40ml glass vials / pre-preserved with dilute hydrochloric acid, Teflon-sealed / refrigeration 4°C / 7 days; and Metals – one, 250mL, HDPE bottle / pre-preserved with dilute nitric acid (1mL) / refrigeration 4°C / 6 months. Samples for metals analysis will be field filtered with 0.45 µm pore-size filters.
Field QA/QC	Quality assurance (QA) and quality control (QC) procedures will be adopted throughout the program to ensure sampling precision and accuracy, which will be assessed through the analysis of 5% field duplicate/replicate samples. Appropriate sampling procedures will be undertaken to prevent cross contamination, in accordance with NEPC (2013). This will ensure:

Table 7-1	SAQP for Gro	undwater Investigation
-----------	--------------	------------------------

Item	Description
	 standard operating procedures are followed; site safety plans are developed prior to works commencement; split duplicate field samples are collected and analysed; samples are stored under secure, temperature controlled conditions; chain of custody documentation is employed for the handling, transport and delivery of samples to the contracted environmental laboratory; and groundwater originating from the site area is disposed in accordance with relevant regulatory guidelines. Field QA/QC will include one pair of intra-laboratory and inter-laboratory duplicates to be tested every 20 primary samples, as well as VOC trip blank and trip spike samples and equipment wash (rinsate) blank samples per batch.
Laboratory QA/QC	 All samples will be analysed by NATA-accredited laboratories. The contract laboratory will conduct in-house QA/QC procedures involving routine analysis of: method blanks; spike recoveries; laboratory duplicates; calibration standards and blanks; QC statistical data; and control standards and recovery plots.
Achievement of Data Quality Objectives	Data quality indicators to be achieved are listed in Section 9-1 . An assessment of the overall data quality should be presented in the final validation report, in accordance with the EPA (2017) <i>Guidelines for the NSW Site</i> <i>Auditor Scheme</i> .

Subject to the findings from the groundwater investigation, further assessment (e.g. more GMEs) may be necessary to achieve site validation.

7.2.7 Stage 7 – Validation Report Preparation

A site validation report will be prepared in accordance with the OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites* and EPA (2017) *Guidelines for the NSW Site Auditor Scheme*, as described in **Section 9.2**.

7.3 REMEDIATION SCHEDULE

An estimated schedule for the remedial works is detailed below in **Table 7-2**. The proposed schedule is based on the remedial works being completed as outlined in this RAP and is dependent on Council approval of any DA and conditions of consent.

Timeframe	Action
Start	Approval of Remediation Plan
Week 1/3	Stage 1 – Additional Investigation for Data Gap Closure
Week 4/5	Stage 2 – Site Preparation
Week 6	Stage 3 – Ground Surface Inspection
Week 7/8	Stage 4 – UPSS Excavation and Disposal
Week 9/16	Stage 4 – Handling and Management of Fill Soil for Offsite Disposal
Week 16/17	Stage 5 – Site Validation and VENM Classification
Week 18/22	Stage 6 – Validation Report Preparation

 Table 7-2
 Indicative Site Remediation Schedule

7.4 REMEDIATION HOLD POINTS

Specific hold-points in the remediation work will be dependent on data gap closure and other specific sampling and analysis tasks, as well as approvals required by the conditions of DA consent and the appointed site auditor. They are designed to minimise remediation risks and identify the outcome/criteria that need to be met for the hold-point to be removed. Those deemed applicable for this RAP are outlined in **Table 7-3**.

Table 7-3	Remediation	Hold	Points
	Nemeulation	noiu	гоша

Remediation Phases	Tasks	Hold-point	Requirement
Preliminaries and Site Establishment	Preparation of CEMP, WHSP and AMP	Submission of plans / reports for approval	Council to approve works Auditor to approve report
General Clean- up	Additional investigations Inspection for USTs and unexpected finds	Unexpected finds may identify unknown contamination that requires further assessment before excavation	Depending on investigation findings
Excavation of UPSS and Fill/Surficial Soils	Waste classification (<i>in-situ</i> or stockpile) Determine need for soil treatment if concentration high Establishment of groundwater treatment system (if req'd)	Waste classification Treatment system set-up	Depending on results, laboratory turnaround time and inspections
Reporting	Final report on remediation and validation sampling	Report preparation and submission	Auditor and Council sign- off

7.5 REMEDIAL CONTINGENCIES

It is anticipated that the proposed remedial technologies should be effective in dealing with the contamination present; however, other remedial contingencies may be required should any of the scenarios detailed in **Table 7-4** arise.

Table 7-4 Remedi	al Contingencies
------------------	------------------

Scenario	Remedial Contingencies/Actions Required
Highly contaminated soils not identified during previous investigation are encountered, particularly at site boundaries	Follow the unexpected finds protocol as detailed in Section 8.6 of this RAP.
	Work to be suspended until the Environmental Project Manager can further assess impacted soils/ materials and associated risks.
Additional UPSSs are encountered at the site	Systems to be removed and the excavations appropriately validated and backfilled by experienced contractor.
	Tank removal works reported by appropriate environmental consultant in accordance with EPA (2014a) <i>Technical Note: Investigation of</i> <i>Service Station Sites</i> and Australian Standard AS4976 (2008). Follow the unexpected finds protocol as detailed in Section 8.6 of this RAP.
Highly impacted sludges are uncovered	The leachability of heavy metals and hydrocarbons will need to be assessed before disposal options are considered. Follow the unexpected finds protocol as detailed in Section 8.6 of this RAP.
Significant (buried) asbestos wastes are	Work to be suspended and asbestos work removed by a suitably

Scenario	Remedial Contingencies/Actions Required
encountered	qualified contactor, in accordance with SafeWork NSW regulations. Follow the unexpected finds protocol as detailed in Section 8.6 of this RAP.
Residual soil impacts remain on-site between site boundary and final excavation	Review/assess soil conditions. Carry out site-specific second tier risk assessment (if required).
	Review/assess potential vapour hazard. If there is a vapour risk additional remedial measures may be required including installation of a vapour barrier or passive or active vapour extraction system.
Contaminated groundwater (including LNAPL or DNAPL) encountered	Review of groundwater conditions on site, may require further groundwater investigations / remediation and longer-term management plan. Any dewatering may require approval under the <i>Water Management Act 2000</i> .
	Remedial measures may include, source removal, natural attenuation, bioremediation, PSH recovery using active pumping (including hydraulic control), installation of a groundwater permeability barrier or similar or in-situ oxidation or stabilisation.
Groundwater contaminant plume is identified and is migrating off-site or there are increases in concentration due to increased infiltration (following demolition)	Review contaminant increase and analytes. Review active remediation alternatives (if necessary). Ensure down-gradient monitoring is undertaken. Carry out fate and transport modelling (if required) and assess the need for further action.
Contamination is identified near heritage items or significant trees (if identified)	Stop work. Review contaminant concentrations and risks to heritage items / flora. Assess human health and environmental risks if contamination remains in place. Review natural attenuation options.
Changes in proposed basement excavation depth	Review the remediation works completed for the site.
Changes in proposed future land uses at the site	Review the remediation works completed for the site.

8 SITE MANAGEMENT

8.1 **RESPONSIBILITIES AND CONTACTS**

Responsibilities for the various parties involved with the remedial program are outlined in Table 8-1.

Table 8-1	Site Management	Responsibilities
-----------	-----------------	------------------

Responsible Party	Details	Responsible for:
Principal Project Manager (PPM)	Dyldam	Overall management of the site remedial activities, particularly with respect to policy and operational procedures.
Property Owner	Dyldam	Implementation of and compliance with the RAP. Notification to contractors of the existence of an RAP. Provision of copies of the current RAP. Provision of copies of the RAP to accompany the Development Application (DA). Notification of the site conditions to the NSW Environmental Protection Agency (EPA) under the duty to report contamination under the <i>Contaminated Land Management Act 1997</i> (if required). Registration of details of Site Audit Statement and RAP on the
Environmental Management Coordinator (EMC) / Remediation Supervisor	ТВА	certificate of title with NSW Land and Property Information (if required). Ensuring that the site remediation works are carried out in an environmentally responsible manner. Liaising between the appointed Environmental Consultant and
		Council providing regular updates and informing of any problems encountered. Ensuring that all environmental protection measures are in place and are functioning correctly during site remediation works.
Demolition, Earthworks or Remediation Contractor(s)	TBA	 Reporting any environmental issues to owner. Ensuring that all operations are carried out as identified in the RAP (demolition and remediation), as directed by the PPM and EMC. Inducting all employees, subcontractors and authorised visitors on procedures with respect to site works, WHSP and environmental management procedures. Reporting any environmental issues to EMC. Maintaining site induction, site visitor and complaint registers. Ensuring that fugitive emissions and dust potentially leaving the confines of the site are suitably controlled and minimised. Ensuring that suspended matter or contaminants in water potentially leaving the site are minimised and suitably controlled, so as not to pollute the environment. Ensuring that vehicles are cleaned and secured so that no mud, soil or water are deposited on any public roadways or adjacent areas. Ensuring that noise and vibration levels at the site boundaries comply with the legislative requirements.

Responsible Party	Details	Responsible for:
Environmental Consultant	ТВА	Ensuring that all operations are carried out as identified in the RAP (demolition and remediation).
	Advising Council and/or the Site Auditor should a scenario arise requiring deviation from the procedures and requirements detailed in this RAP.	
	Drafting the validation report.	
Qualified TBA Independent Consultant / EPA- accredited Site Auditor	ТВА	Reviewing proposed remediation strategies and ensuring remediation is technically feasible, environmentally justifiable and consistent with relevant legislation and guidelines.
		Review of actions taken demolition, earthworks or remediation contractor.
	Ensure all works have complied with the RAP and remedial procedures.	

8.2 MATERIALS HANDLING AND MANAGEMENT

Table 8-2 summarises the measures that should be implemented in respect of materials handling during excavation and remediation works at the site.

Table 8-2	Materials Handling and Management Requirements
-----------	--

ltem	Description/ Requirements Excavation of fill materials should be completed by a suitably qualified contractor to ensure:	
Earthworks contractors		
	 All site staff are aware of the environmental and health and safety requirements to be adhered to; There is no discernible release of dust into the atmosphere as a consequence of the works; There is no discernible release of contaminated soil into any waterway as a 	
	consequence of the works; andThere are no pollution incidents, health impacts or complaints.	

ltem	Description/ Requirements
Stockpiling of materials	 All stockpiles will be maintained as follows: Should the temporary stockpiling of excavated, contaminated soils be necessary, soils from different areas must be stockpiled separately and isolated from other excavated materials. Stockpiles should also be protected from wind to avoid airborne dispersion of asbestos. Stockpiles must be located on sealed surfaces such as concrete hardstand, asphalt, or high density polyethylene plastic sheeting. Should stockpiles comprising contaminated soils be placed on bare soils, these stockpiles should be placed on yet to be remediated areas. Excavated soils should e stored in an orderly and sa e ondition (2 height). Stockpiles should be battered with sloped angles to prevent collapse. Stockpiles should be covered after being lightly conditioned by sprinkler to prevent dust blow and control odours. Should the stockpiles remain <i>in-situ</i> for over 24 hours, silt fences or hay bales should be erected around each stockpile to prevent losses from surface erosion (runoff). Stockpiles will be strategically located to mitigate environmental impacts while facilitating material handling requirements. Any soils with heavy staining and/or exhibiting odours are to be isolated from other excavated materials, for additional waste classification sampling and testing. Air emission controls should be developed in the CEMP for the site. For example, in areas impacted by hydrocarbon, a hydrocarbon mitigation agent such as BioSolve@, Pinkwater@, or Anotech (or equivalent product selected by the contractor) in combination with the fine mist spray should be deployed during disturbance and stockpiling of the materials. Regular boundary monitoring for air emission should be undertaken during remediation works.
Loading of material	 Loading of stockpiles / materials will be as follows: Measures shall be implemented to ensure no contaminated material is spilled onto public roadways or tracked off-site on vehicle wheels. Such measures should include the use of a wheel washing/cleaning facility, placed before the egress point on the site, and should be able to handle all vehicles and plant operating on-site. Residue from the cleaning facility should be collected, and either dewatered on site in a contained / bunded area or disposed as a slurry to an approved facility. Such residue will be deemed contaminated unless proven otherwise.
Transport of materials	 Prior to being assigned to an appropriate waste disposal facility, all waste fill/soils should be classified in accordance with the EPA (2014b) <i>Waste Classification Guidelines</i>. If prior immobilisation treatment of the waste soils is required, disposal consent will be obtained from the NSW EPA prior to spoil transport. All trucks transporting soils from the site are to be covered with tarpaulins (or equivalent). Transport of contaminated material off the site is to be via a clearly distinguished haul route designated by the site traffic management plan. All haulage routes for trucks transporting soil, materials, equipment and machinery shall comply with all road traffic rules, minimise noise, vibration and odour to adjacent premises, utilise state roads and minimise use of local road. All deliveries of soil, materials equipment or machinery should be completed during the approved hours of remediation and exit the site in a forward direction. Removal of waste materials from the site shall only be carried out by a recognised contractor holding the appropriate EPA NSW licenses, consents and approvals. Waste must be transported less than 150km from the source (<i>POEO (Waste) Regulation 2014</i>) and landfills are required to be licensed for the category of waste they are scheduled to receive.

ltem	Description/ Requirements
Material tracking	Materials excavated from the site should be tracked from the time of their excavation until their disposal. Tracking of the excavated materials should be completed by recording the following:
	Origin of material; Metarial type:
	 Material type; Approximate volume and/or weight; and Truck registration number. Disposal locations will be determined by the remediation contractor. Locations, waste disposal documentation (weighbridge dockets) and the above listed information must be provided to the remediation consultant for reporting.
Material visual inspection prior to validation sampling	Following the completion of remedial works as specified within this RAP, the following applies:
	 A suitably qualified environmental scientist should undertake a visual inspection of the work area. If visual observations indicate contamination, the earthworks contractors should rectify any issues arising from the inspection (i.e. further excavation or 'chasing out' until soils show no evidence of contamination based on visual inspection and/or odours).
	 Following completion of the visual inspection, validation sampling of soils should be completed. Validation sampling is discussed in Section 9. Only following satisfactory validation will remedial works be deemed completed.

8.3 MANAGEMENT MEASURES

All work must be undertaken with due regard to the minimisation of environmental effects and to meet all statutory environmental and safety requirements (**Section 8.5**). A CEMP should be developed for the site works by the site contractor/builder, which takes into account relevant guidance including, but not necessarily limited to:

- DA Conditions of Consent;
- Canterbury Development Control Plan 2012; and
- *Managing Urban Stormwater, Soils and Construction*, Volume 1: 4th edition (March 2004) often referred to as the 'Blue Book'.

Overall site management requirements related to the remedial works are presented in Table 8-3.

Category	Measure
Demolition (including Asbestos Management)	Appropriate measures shall be taken to ensure that demolition works are completed in accordance with SafeWork NSW standards and codes of practice. Any asbestos identified should be managed in accordance with SafeWork NSW codes of practice and Australian Standards.
Site Stormwater Management and Control	 Appropriate measures shall be taken to ensure that potentially contaminated water does not leave the site. Such measures will include: diversion and isolation of any stormwater from any contaminated areas; provision of sediment traps including geotextiles or hay bales; and discharge of any water to drains and water bodies must meet the appropriate effluent discharge consent condition under the <i>Protection of the Environmental Operations Act 1997</i>.
Soil Management	Appropriate measures shall be taken during soil excavations to reduce nuisance dust and odours. Soils will be disposed in accordance with the NSW <i>Protection of the Environment Operations (Waste) Regulation 2014</i> .

Table 8-3 Site Management Measures

Category	Measure
Dust and Odour	Control of dust and odour during the course of the remediation works shall be maintained by the contractor to ensure no nuisance dust or odours are received at the site boundary according to requirements of the <i>Canterbury DCP 2012</i> .
	Action levels and specific control measures would be described in the site CEMP and may include, but will not necessarily be limited to the following:
	• site wide water spraying, as/when appropriate, to eliminate wind-blown dust;
	 use of mist sprays, and/or sprinklers on stockpiles, fill screening areas and loaded fill to lightly condition the material;
	 use of tarpaulin or tack-coat emulsion or sprays to prevent dust blow from stockpiles or from vehicle loads;
	 covering of stockpiles or loads with polythene or geotextile membranes;
	 restri tion o sto ile heights to 2m above surrounding site level;
	 ceasing works during periods of inclement weather such as high winds or heavy rain; and
	 regular checking of the fugitive dust and odour issues to ensure compliance with the CEMP requirements and undertaking immediate remedial measures to rectify any cases of excessive dust or odour (e.g. use of misting sprays or odour masking agent).
	El notes the Council Contaminated Land Policy requires that no odours shall be detected at any boundary of the site during remediation works by an authorised Council Officer relying solely on sense of smell. Should significant odours be detected, during site remediation, additional control measures for odour control may be required under the Council contaminated land policy, being:
	 use of appropriate covering techniques such as plastic sheeting to cover excavation faces;
	 use of fine mist sprays / hydrocarbon mitigation agent on the impacted areas/materials (examples of mitigation agents include BioSolve® Pinkwater®, or Anotech, however a similar product may be selected by the contractor); and
	 adequate maintenance of equipment and machinery to minimize exhaust emissions.
	Records of volatile emissions and odours shall be logged, kept on-site and made available to Council Officers on request.
Noise and Vibration	Noise and vibration will be restricted to reasonable levels. All plant and machinery used on site will be noise muffled to ensure that noise emissions do not breach statutory levels as defined within the <i>Canterbury DCP 2012</i> .
Hours of Operation	Working hours will be restricted to those specified by Council, which are normally defined as being 7am to 5pm weekdays and 8am to 1pm Saturdays; no Sunday or public holiday works permitted. These hours may differ from DA conditions and DA conditions specified for the site must be adhered to.
Community Engagement	Community engagement should be carried out in accordance with Schedule B(8) of NEPC (2013). Prior to the commencement of any remediation works at the site every owner and occupier of any land located either wholly or partly within 100m o the boundary of the premises (including local council and the RMS) should be notified at least 30 days in advance. The notice should include: • advice of demolition and excavation work to be carried out on the premises;
	 state the time and date such work is to commence;
	 indicate that the works are being conducted to minimise any risk of site contamination impacting on off-site receptors;
	 provide appropriate site signage at an easily readable location on the site fencing, including site contact name and phone number to be contacted should any matter arise; and
	• provide contact information and procedure for registering any complaints.

Category	Measure
Incident Management and Community Relations	While various environmental management and occupational safety plans will be developed to protect human health and the environment, incidents may occur which pose a risk to the various stakeholders. To mitigate these risks and ensure that a suitable response is carried out quickly, a response plan to any incident that may occur on site should be prepared and various responsibilities assigned. The site WHSP and CEMP should document these procedures and responsibilities, and incident contact numbers should be maintained in an on-site register.
	All other relevant emergency contact numbers such as Police, Fire Brigade, and Hospital should be listed in the WHSP and posted on-site for easy access.

8.4 CONTINGENCY MANAGEMENT

Contingency plans for anticipated problems that may arise on-site during the course of the site preparation works comprising demolition and remediation are presented in **Table 8-4**.

Table 8-4	Contingency Management	
-----------	------------------------	--

Anticipated Problems	Corrective Actions
Chemical / fuel spill	Stop work, notify above site project manager. Use accessible soil or appropriate absorbent material on site to absorb the spill (if practicable). Stockpile the impacted material in a secure location, sample and determine the appropriate disposal/treatment option.
Leaking machinery or equipment	Stop work, repair failed control measure.
Failure of erosion or sedimentation control measures	Stop activities, contact the site project manager. Follow the unexpected finds protocol as detailed in Section 8.6 of this RAP. Prepare a management plan if required, to address the issue.
Excessive rainfall	Collect samples and assess against relevant criteria from the EPA (2014b) <i>Waste Classification Guidelines</i> , to enable disposal options to be formulated.
Water in excavations	Stop the identified leak (if possible). Clean up the spill with absorbent material. Stockpile the impacted material in a secure location, sample and determine the appropriate disposal/treatment option.
Excessive Dust	Use water sprays to suppress the dust or stop site activities generating the dust until it abates.
Excessive Noise	Identify the source, isolate the source if possible, modify the actions of the source or erect temporary noise barriers if required.

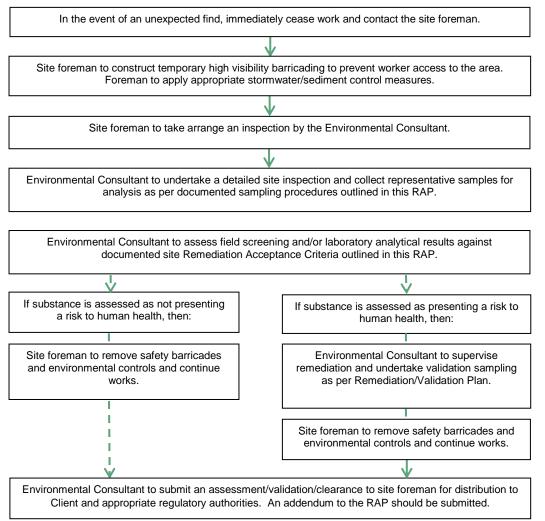
Anticipated Problems	Corrective Actions
Excessive Odours / Vapours	Stage works to minimise odours/vapours. If excessive organic odours/vapours are being generated, stop work and monitor ambient air across site with a PID. Implement control measures including respirators for on-site workers, use of odour suppressants, wetting down of excavated material.
	No nuisance odours shall be detected at any site boundary during remedial works. Should odour emissions be detected at or beyond the site boundary, it is recommended, as part of the CEMP and community consultation procedure, that the Remediation Contractor and the Principal Project Manager:
	 Notify the owners and occupiers of premises adjoining and across the road from the site regarding potential odour issues. Notification should be in writing. This is also required by the Council Contaminated Land Policy.
	 In the notification, as well as on street signage, provide contact details of the site personnel for anyone who may be concerned by odour emission during the remediation.
	 Temporarily pause site works to allow for excess odour to subside to a level acceptable by off-site receptors, should it be necessary, after implementation of the above-listed control measures.
	 Record logs for volatile emissions and odours. Such records should be kept on-site and made available for inspection on request.
	In regard to off-site impact from petroleum vapour, El notes that odour is generally detected at concentrations much lower than what will constitute a health-based risk. Measures listed above for odour control (Table 8-3) may also be applied for vapour control.
	Ensure sediment and surface water controls are operating correctly. If possible divert surface water away from active work areas or excavations.
Equipment failures	Ensure that spare equipment is on hand at site, or that the failed equipment can be serviced by site personnel or a local contractor.
Identification of cultural or building heritage items	Stop work and notify site project manager. Follow the unexpected finds protocol as detailed in Section 8.6 of this RAP. Prepare action or conservation plan as required.
Unearthing unexpected materials, fill or waste	Stop activities, contact the site project manager. Follow the unexpected finds protocol as detailed in Section 8.6 of this RAP. Prepare a management plan if required, to address the issue.
Complaint Management	Notify Client, Project Managers and Environmental Consultant (if required) following complaint. Report complaint as per management procedures. Implement control measures to address reason of complaint (if possible). Notify complainant of results of remedial actions.

8.5 WORK HEALTH AND SAFETY PLAN

As required by the NSW *Work Health and Safety Act 2011*, a WHSP should be prepared by the Principal Contractor (**Section 8.1**). Its purpose is to manage the health and safety of site workers and nearby residents, and address such issues as site security, exclusion zones, excavation safety, vibration, noise, odour and dust levels. The plan should address the risks during the remediation works and cover site-specific requirements associated with the contaminants present within the site soils and groundwater.

The officer responsible for implementing health and safety procedures should induct all site personnel so they comply with the requirements of this document. It is the contractor's responsibility to ensure that all other permits, approvals, consents or licences are current. A brief summary of hazards and mitigation measures relevant to the remedial works in **Table 8-5**.

Table 8-5Remedial Hazards


Anticipated Problems	Corrective Actions
Chemical Hazards	Contaminated sites have chemical substances that may present a risk to human health and the environment. Chemicals of concern and associated risks are as detailed within the CSM (Section 3.3). The site specific WHSP should set out controls to mitigate potential risks.
Physical Hazards	The following hazards are associated with conditions that may be created during site works:
	deep excavations;
	heat exposure;
	buried services;
	noise, vibration and dust;
	 fugitive emissions (strong odours, vapours);
	electrical equipment; and
	 the operation of heavy plant equipment.
Personal Protective Equipment and Monitoring	Personnel should, wherever possible, avoid direct contact with potentially contaminated material. Workers are to ensure that surface waters or groundwater are not ingested and that direct skin contact with soil and water is avoided. Standard PPE with the addition of disposable P2 dust masks will be sufficient for the prescribed remedial works.

8.6 UNEXPECTED FINDS PROTOCOL

Should unexpected finds be encountered, the approach in **Table 8-6** is to be followed.

Table 8-6 Unexpected Finds Protocol

A contingent asbestos assessment procedure is described below:

Asbestos Assessment Procedure (if required):

In addition to the above, should asbestos be identified in soil during any walkover inspection or sitewide soil investigation / validation, further assessment for asbestos should be carried out prior to disturbance of site soils. The assessment procedure is described below:

- 1. Follow the Unexpected Finds Protocol and notify the appointed environmental consultant.
- 2. The appointed consultant to design an investigation program to delineate asbestos impacts in soil in accordance with relevant, EPA endorsed, asbestos assessment guidelines.
- 3. An AMP to be prepared by the appointed remediation contractor for the remedial works program.
- 4. Areas impacted by asbestos should be segregated from the remainder of the site, and marked by prominent features that withstands weathering (e.g. star picket and danger tape).
- 5. Undertake separate waste classification assessments for areas impacted by asbestos and the remainder of the site.

- 6. Soils from asbestos-impacted areas will need to be excavated and disposed separately from the remainder of the site. Should temporary stockpiling be required, the material handling and management requirements in **Section 8.2** should be followed.
- 7. Validate underlying materials after complete removal of asbestos-impacted soils. Validation samples should be analysed for asbestos using a gravimetric method.

eiaustralia

9

The remediation of an impacted soil area will be deemed acceptable based on the achievement of the following validation objectives:

- Remedial Excavations Validation of all remedial excavation areas where infrastructure or contaminated soils have been removed will involve sampling and analysis to ensure that contaminant concentrations are below the *Remediation Acceptance Criteria* (Section 5.2). The sampling frequency will be in accordance with the NEPC (2013) and EPA (1995) sampling design guidelines and all tests shall be performed by NATA-accredited environmental analytical laboratories.
- **Backfill Materials** Should backfilling be required, validation of imported fill materials used for the backfilling of remediated areas will be undertaken, to verify their suitability for the proposed land use.
- **Groundwater** Concentrations in groundwater are to be within the adopted GILs (Section 5.2), or (if exceeding) the regional background concentrations, or (if exceeding) demonstrated to not constitute unacceptable human-health and ecological risks to both on and off site receptors.

9.1 VALIDATION SOIL SAMPLING METHODOLOGY

Soil validation sampling will be in accordance with the procedure described in Table 9-1.

Action	Description
Sample Collection	Soil validation sampling will be directly from the exposed surface of excavation, or from the material brought to the surface by the excavator bucket. Sampling data shall be recorded to comply with routine chain of custody requirements.
Sampling Frequency	Hotspot and Residual Fill Validation Sampling
	Any fill remaining at the site will be tested at a frequency of 1 sample per 500m ² to verify its condition. Four wall and one base samples (minimum) for any hotspot validation. "Chase-out" excavation areas will require one sample every 25m ² , and/or a minimum one sample per 5m lineal distance.
	UST pits
	USTs <4m in length:
	One sample in the centre of the UST footprint and one sample from each of the four walls.
	USTs between 4-10m in length:
	One sample beneath each end of the UST footprint and two samples from each of the four walls.
	 USTs >10m in length:
	One sample beneath each end of the UST footprint and three samples from each of the four walls.
	 Fuel bowser, bowser foundation and remote fill points / box:
	One sample in the footprint of each bowser foundation / remote fill point / fill box.
	Fuel feed lines:
	One sample every 5m along the footprint of the feed line.
	 "Chase-out" excavation areas including inspection pits, wash bay, mechanical hoists, metal / TRH / VOC (BTEX) / PAH hotspots etc.
	Base: minimum one sample every 25m ² , with additional samples to be collected in areas showing visual or olfactory signs of contamination.
	Walls: minimum one sample per 5m lineal distance.
	Natural Soil Validation (Stage 6)
	Surface of the exposed natural soils should be inspected first by a qualified person to

Table 9-1 Validation Sample Collection and Handling Procedures

The rema Soil sam San be u Vali Mate prop at a sam impo appl	firm removal of fill materials (hotspot and basement excavation areas, at least). re should be no visible asbestos-containing materials or other foreign materials aining on the excavation surface. samples to be collected in a 25m x 25m systematic grid (approximately 24 ples) across the entire, final site surface, in accordance with EPA (1995) <i>apling Design Guidelines</i> . Note, data gap closure samples (Section 7.2.1) could itilised for this part of the validation. Idation of Imported Backfill Materials erials being imported to the site should be certified as VENM, or suitable for the posed land use. If certification cannot be provided, the materials should be teste frequency of 1 sample per 25m ³ , up to a volume of 250m ³ . A minimum of three uples is required for any volume of imported fill from the same source. For ported materials >250m ³ in volume, the sampling frequency may be reduced by lying statistical analysis, provided a minimum of ten samples is collected.
sam <i>San</i> be u Vali Mate prop at a sam impo appl	ples) across the entire, final site surface, in accordance with EPA (1995) <i>appling Design Guidelines.</i> Note, data gap closure samples (Section 7.2.1) could itilised for this part of the validation. <i>dation of Imported Backfill Materials</i> erials being imported to the site should be certified as VENM, or suitable for the bosed land use. If certification cannot be provided, the materials should be teste frequency of 1 sample per 25m ³ , up to a volume of 250m ³ . A minimum of three uples is required for any volume of imported fill from the same source. For ported materials >250m ³ in volume, the sampling frequency may be reduced by
Mate prop at a sam impo appl	erials being imported to the site should be certified as VENM, or suitable for the bosed land use. If certification cannot be provided, the materials should be teste frequency of 1 sample per 25m ³ , up to a volume of 250m ³ . A minimum of three ples is required for any volume of imported fill from the same source. For prted materials >250m ³ in volume, the sampling frequency may be reduced by
prop at a sam impo appl	posed land use. If certification cannot be provided, the materials should be teste frequency of 1 sample per 25m ³ , up to a volume of 250m ³ . A minimum of three ples is required for any volume of imported fill from the same source. For ported materials >250m ³ in volume, the sampling frequency may be reduced by
Analytical Suite All v	
-	ralidation samples should be field screened for soil vapour with a calibrated PID. SS Excavations (Stage 4)
Hea	vy metals, TRHs and VOCs (including BTEX), at least.
Hot	spot Fill (Remedial) Excavations (Stage 5)
	vy metals, TRHs and asbestos, at least.
mini	Cs (including BTEX), PAHs, OCPs, OPPs and PCBs, in addition to the above mum suite, will be included for validation of site-wide / data gap closure samples ural Soil Validation and VENM Classification (Stage 6)
	vy metals (arsenic, cadmium chromium, copper, lead, mercury, nickel and zinc) Is, BTEX, PAHs, pH, electrical conductivity and foreign materials.
3) 01	estos: Gravimetric method (NEPC, 2013) if asbestos observed on surface (Stag r if reported in fill (Stages 1 and 4-5). Otherwise presence/absence protocol.
land exch cont	erials remaining in areas of accessible soils or deep soil areas intended for lscaping should also be tested for physicochemical parameters of pH, cation nange capacity and clay content to enable calculation of site specific added taminant limits (ACLs) for EIL verification and assessment of ecological risk.
Hea	vy metals (arsenic, cadmium chromium, copper, lead, mercury, nickel and zinc), Is, BTEX, PAHs, OCPs, OPPs, PCBs and asbestos.
	additional contaminants of concern identified during additional site investigation remediation should be added to the above analytical suites.
	use of stainless steel sampling equipment.
Tracking 3% :	ampling equipment (including hand tools or excavator parts) to be washed in a solution of phosphate free detergent, followed by a rinse with potable water prior ach sample being collected.
each	ct transfer of the sample into new glass jars or plastic bags is preferred, with h plastic bag individually sealed to eliminate cross contamination during sportation to the laboratory.
on a will I Star Sch	s will be classified in-field with respect to lithological characteristics and evaluate a qualitative basis for odour and visual signs of contamination. Soil classification be based on the Unified Soil Classification System (USCS) and Australian ndard (AS) 1726-1993. The recommendations provided in Section 7.3 of edule B2 in NEPC (2013) will used as a general guideline for recording field ervations during the validation phase.
	el sample containers with individual and unique identification including Project Sample No., Sampling depth, date and time of sampling.
	e sample containers into a chilled, enclosed and secure container for transport t laboratory.
can	vide chain of custody documentation to ensure that sample tracking and custody be cross-checked at any point in the transfer of samples from the field to the ronmental laboratory.

Action	Description
Sample Containers and Holding Times	Metals - 250g glass jar / refrigeration 4°C / 6 months (maximum holding period). TRH/VOC - 250g glass jar / refrigeration 4°C / 14 days (maximum holding period). PAH/OCP/OPP/PCB - 250g glass jar / refrigeration 4°C / 14 days (maximum holding period). Asbestos - up to a 10 Litre resealable plastic (polyethylene) bag / no refrigeration / indefinite holding time.
Field QA/QC	 Quality assurance (QA) and quality control (QC) procedures will be adopted throughout the field sampling program to ensure sampling precision and accuracy. Appropriate sampling procedures will be undertaken to prevent cross contamination, in accordance with EI's Standard Operating Procedures Manual. This will ensure: standard operating procedures are followed; site safety plans are developed prior to works commencement; split duplicate field samples are collected and analysed; samples are stored under secure, temperature controlled conditions; chain of custody documentation is employed for the handling, transport and delivery of samples to the contracted environmental laboratory; and contaminated soil, fill or groundwater originating from the site area is disposed in accordance with relevant regulatory guidelines. Field QA/QC will include one pair of intra-laboratory and inter-laboratory duplicates to be tested every 20 primary samples, as well as one VOC trip blank sample and one equipment wash (rinsate) blank sample per sample batch.
Laboratory Quality Assurance and Quality Control	 All samples will be analysed by NATA-accredited laboratories. The contract laboratory will conduct in-house QA/QC procedures involving the routine analysis of: method blanks; spike recoveries; laboratory duplicates; calibration standards and blanks; QC statistical data; and Control standards and recovery plots.
Achievement of Data Quality Objectives	Data quality indicators to be achieved are listed in Table 9-2 . An assessment of the overall data quality should be presented in the final validation report, in accordance with the EPA (2017) <i>Guidelines for the NSW Site Auditor</i> <i>Scheme</i> .

Data Quality Objective	Data Quality Indicator	Acceptable Range
Precision - A quantitative measure of the variability (or reproducibility) of data	Field: Analysis of field duplicates	 <30% RPD. RPDs that exceed this range may be considered acceptable where: Results are less than 10 times the limits of reporting (LOR); Results are less than 20 times the LOR and the RPD is less than 50% and Heterogeneous materials or volatile compounds are encountered.
	Laboratory: Analysis of laboratory duplicates	Prescribed by the laboratories
Accuracy - A quantitative measure of the closeness of reported data to the "true" value	Field: Rinsate blanks Trip blanks (laboratory prepared) Calibration of instruments against known standards	< Laboratory LOR
	Laboratory: Analysis of laboratory control spike, matrix spike, reagent blanks / method blanks and surrogate spikes	Prescribed by the laboratories
Representativeness - The confidence (expressed qualitatively) that data are representative of each medium present onsite	Field: Trip blanks (laboratory prepared) Trip spikes (laboratory prepared) Appropriate media sampled according to SAQP Each media identified in SAQP sampled Appropriate sample collection methodologies, handling, storage and preservation techniques used Consistency between field observations and laboratory results.	< Laboratory LOR Spike recovery 70-130%
	Laboratory: Method blanks Conformance with specified holding times	Prescribed by the laboratories
Comparability - The confidence (expressed qualitatively) that data may be considered to be equivalent for each	Field: Same sampling methods Climatic conditions (temperature, rainfall, wind) Same type of samples collected (filtered, size, fractions)	-
sampling and analytical event	Laboratory: Same sample analytical methods used (including clean-up) Same sample PQLs Same laboratories (NATA-accredited) Same units	-

Table 9-2 DQIs for Validation Assessment

Data Quality Objective	Data Quality Indicator	Acceptable Range
Completeness - A measure of the amount of useable data from a data collection activity	Field: Each critical location sampled Samples collected at targeted locations and depth SAQP appropriate and complied with Experienced sampler Field documentation correct	Compliance with this RAP
	Laboratory: All critical samples analysed according to SAQP and proposal All analytes analysed according to SAQP in proposal Appropriate methods and PQLs Sample documentation complete Sample holding times complied with	Compliance with this RAP

9.2 VALIDATION REPORTING

All fieldwork, waste disposal (tipping) dockets, chemical analysis, discussions, conclusions and recommendations will be documented in a validation report for the site.

The validation report will be prepared in general accordance with requirements of the OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites* and NSW EPA (2017) *Guidelines for the NSW Site Auditor Scheme* and will confirm the site has been remediated to a suitable standard for the proposed development.

The Site Validation Report will be submitted for Auditor / Council review at the completion of the remediation works program.

10 CONCLUSIONS

This RAP has been prepared to guide remediation works at 15-33 Brighton Avenue, Croydon Park NSW, based on currently available information on site characterisation and the proposed future land zoning and uses.

The preferred remedial strategy is off-site disposal of impacted soils to licensed waste facilities. Following approvals and site establishment, the main remediation works will include, but not necessarily be limited to:

- Stage 1 Additional Investigation for Data Gap Closure;
- Stage 2 Site Preparation;
- Stage 3 Ground Surface Inspection;
- Stage 4 UPSS Excavation and Disposal;
- Stage 5 Handling and Management of Fill Soil for Off-site Disposal;
- Stage 6 Site Validation and VENM Classification;
- **Stage 7** Validation Report Preparation.

All wastes shall be transported to appropriate, EPA-licensed facilities, after formal classification. All excavated (remediation) areas shall be validated, to confirm that remaining site soils are suitable for the proposed land zoning and its permissible uses. Site reinstatement with validated natural materials will be performed where required.

This RAP has been prepared to enable the developer to meet its obligations under the *Contaminated Land Management Act 1997* (CLM Act 1997) and accompany a Planning Proposal to Canterbury Bankstown Council for rezoning of the land and subsequent future development. In summary, EI considers that the site can be made suitable for a range of uses (including residential), through the implementation of the works described in this RAP.

Should unexpected finds be discovered during the course of the remediation program, the procedures described under the Unexpected Finds Protocol and the Site Validation Plan will be implemented, until the remediation goals have been achieved and the land is deemed suitable for the intended use(s).

Following completion of the remediation and validation works a Site Validation Report will be prepared in accordance with the OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*.

In summary, EI considers that the site can be made suitable for a range of uses (including residential), through the implementation of the works described in this RAP.

Mr Rod Harwood of Harwood Environmental Consultants (HEC) is the appointed NSW EPA Site Auditor for the purpose of reviewing this RAP and preparing a Site Audit Statement (SAS) / Report (SAR).

11 STATEMENT OF LIMITATIONS

This report has been prepared for the exclusive use of Dyldam (the Client), whom is the only intended beneficiary of EI's work. The scope of this RAP is limited to that agreed with Mr Andrew Shehadeh of Dyldam.

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

El has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the environmental industry in Australia as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this report must be read in conjunction with the whole of this report, including its appendices and attachments.

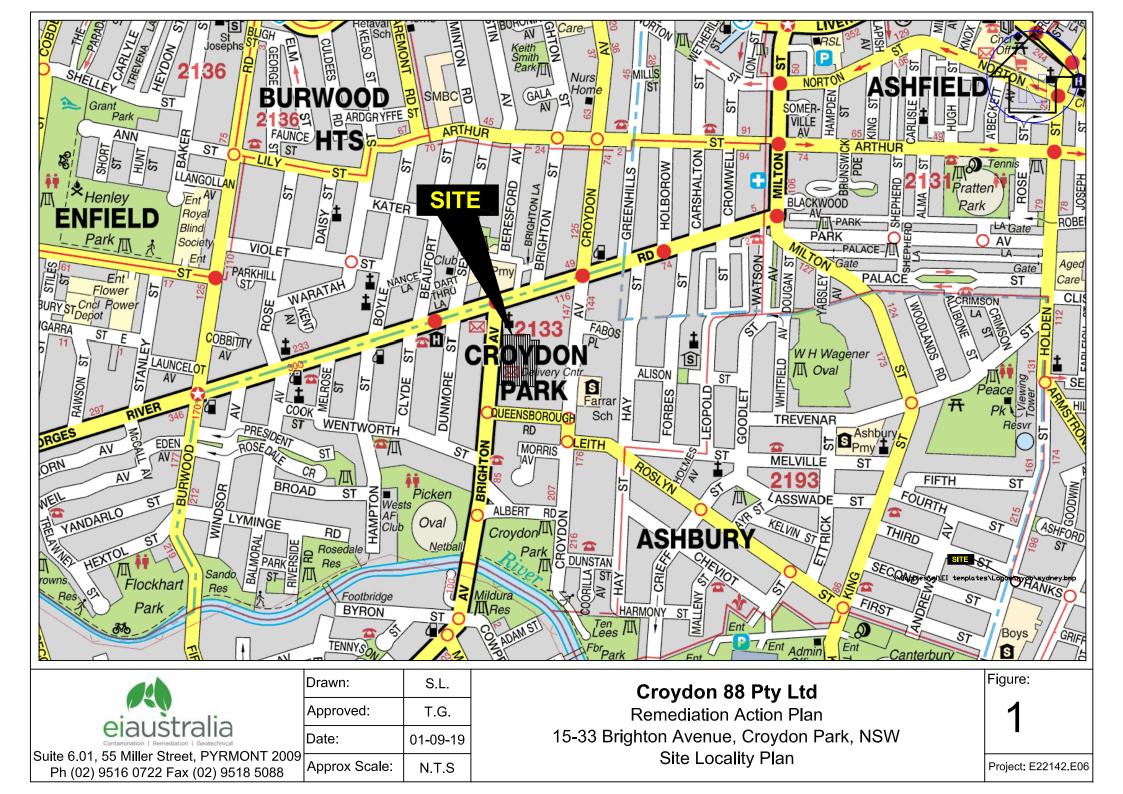
The conclusions presented in this report are based on limited investigations of conditions, with specific sampling locations chosen to be as representative as possible under the given circumstances.

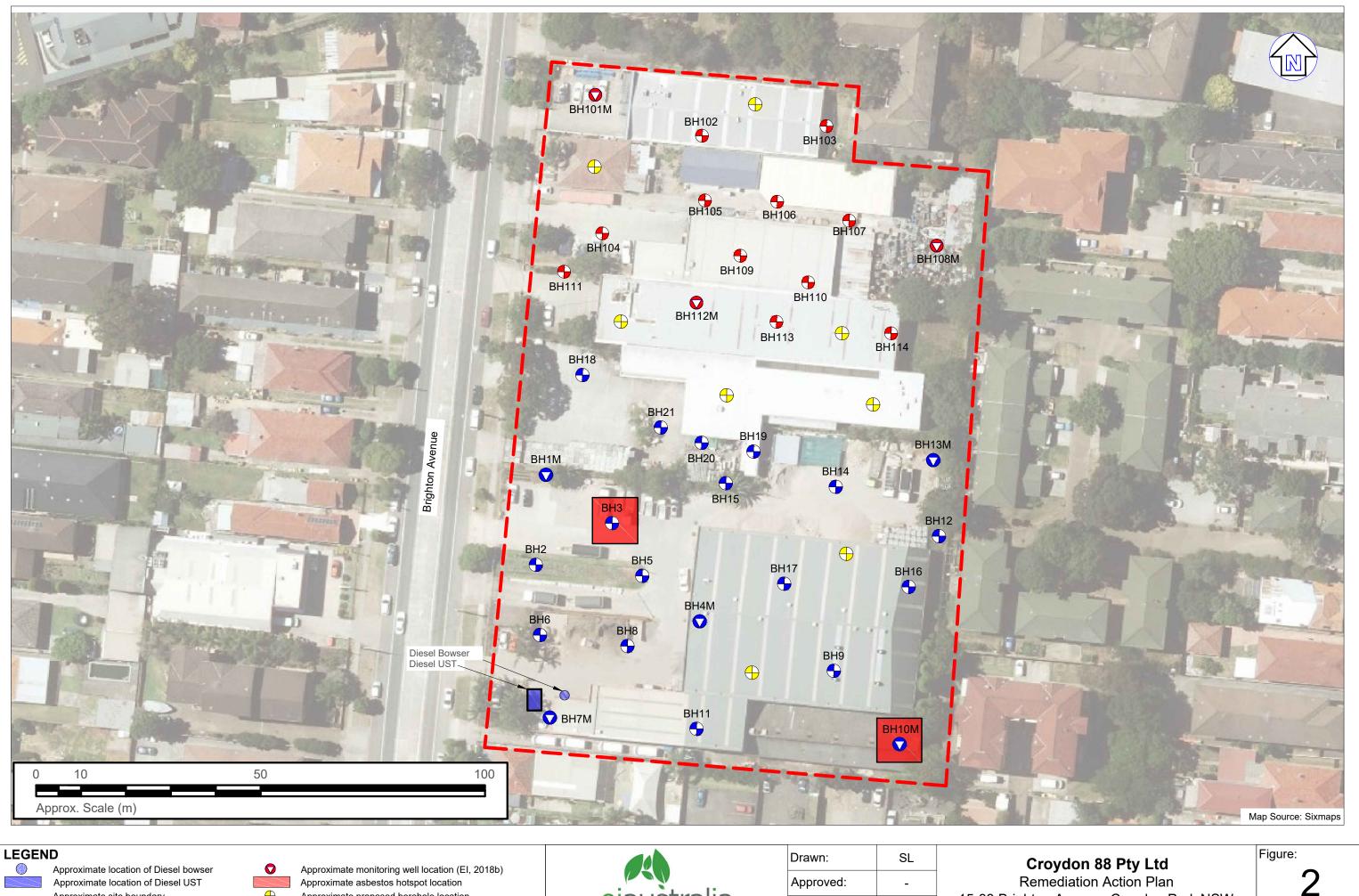
El's professional opinions are reasonable and based on its professional judgment, experience, training and results from analytical data. El may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified by El.

El's professional opinions contained in this document are subject to modification if additional information is obtained through further investigation, observations, or validation testing and analysis during remedial activities. In some cases, further testing and analysis may be required, which may result in a further report with different conclusions.

- ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.
- ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia, August 2018.
- Australian Standard (2005) Table E1 Minimum sampling points required for site characterisation, in Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS4482.1-2005.
- Chapman GA and Murphy CL (1989) *Soil Landscapes of the Sydney 1:100 000 Sheet*, Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DECCW (2010) UPSS Technical Note: Decommissioning, Abandonment and Removal of UPSS, Department of Environment, Climate Change and Water New South Wales, DECCW 2010/36, January 2010.
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) *Geological Survey of New South Wales*, Department of Mineral Resources.
- DUAP / EPA (1998) Managing Land Contamination. Planning Guidelines SEPP 55 Remediation of Land, NSW Department of Urban Affairs and Planning / NSW Environment Protection Authority, August 1998
- EPA (1995) Sampling Design Guidelines, Environment Protection Authority of New South Wales, Contaminated Sites Unit.
- EPA (2014a) *Technical Note: Investigation of Service Station Sites*, Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA.
- EPA (2014b) Waste Classification Guidelines Part 1 Classifying Waste, Environment Protection Authority of New South Wales, November 2014.
- EPA (2017) *Guidelines for the NSW Site Auditor Scheme* (3rd Edition), Environmental Protection Authority of New South Wales, November 2017.
- Landcom (2004) *Managing Urban Stormwater: Soils and Construction*, Published by the New South Wales Government, Fourth Edition, March 2004.
- Murphy CL (1997) Acid Sulfate Soil Risk of the Botany Bay Sheet Department of Land and Water Conservation, Sydney, Second Edition, Supplied by the Sydney South Coast, Geographical Information Systems Unit.
- NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.
- OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*, NSW Office of Environment and Heritage (OEH), OEH 2011/0650.
- USEPA (2006) *Data Quality Assessment: A Reviewers Guide EPA QA/G-9R*, USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.
- WADOH (2009) *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia*, Published by the Western Australian Department of Health, May 2009.
- WHO (1996) Guidelines for Drinking Water Quality, World Health Organisation, 1996
- WorkCover (2011a) *How to Safely Remove Asbestos. Code of Practice*, Safe Work Australia Publication, ISBN 978-0-642-33317-9, December 2011.
- WorkCover (2011b) *Work Health and Safety Act 2011*, WorkCover Authority of New South Wales Publication, January 2012.
- WorkCover (2014) *Demolition Work Code of Practice*, WorkCover Authority of New South Wales, ISBN 978-0-642-78415-5.

ABBREVIATIONS


AHDAustralian Height DatumANZECCAustralian and New Zealand Environment Conservation CouncilARMCANZAgriculture and Resource Management Council of Australia and New ZealandASTAbove-ground Storage TankB(a)PBenzo(a)PyreneBGLBelow Ground LevelBHBoreholeBTEXBenzene, Toluene, Ethyl benzene, XyleneCOPCsContaminants of Potential ConcernCSMConceptual Site ModelCTContaminant ThresholdsCVOCsChlorinated Volatile Organic CompoundsDPDeposited PlanDQOData Quality ObjectivesDSIDetailed Site Investigation LevelEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialESLEcological Screening LevelGILGroundwater Investigation LevelGILGroundwater Investigation LevelHSLHealth-based Screening LevelGILGroundwater Monitoring EventHILHealth-based Screening LevelSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA/CCQuality Sustance / Quality ControlRAPRemediation Action PlanSILSol Investigation LevelTSHPhase Separated HydrocarbonsVCCUnderground Storage TankVENMVirgin Excavated Natural Material <th>ACM</th> <th>Asbestos-containing Material</th>	ACM	Asbestos-containing Material
ANZECCAustralian and New Zealand Environment Conservation CouncilARMCANZAgriculture and Resource Management Council of Australia and New ZealandASTAbove-ground Storage TankB(a)PBenzo(a)PyreneBGLBelow Ground LevelBHBoreholeBTEXBenzene, Toluene, Ethyl benzene, XyleneCOPCsContaminants of Potential ConcernCSMConceptual Site ModelCTContaminant ThresholdsCVOCsChlorinated Volatile Organic CompoundsDPDeposited PlanDQOData Quality ObjectivesDSIDetailed Site InvestigationEILEcological Investigation LevelEPAEnvironment Protection AuthorityEMPEscological Screening LevelGMEGroundwater Monitoring EventHILHealth-based Investigation LevelGMEGroundwater Investigation LevelGMEGroundwater Monitoring EventHILHealth-based Investigation LevelRSLHealth-based Investigation LevelMSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmPats Per MillionPSHPhase Separated HydrocarbonsPIDPhoto-ionisation LevelRAPRemediation Action PlanSILSoil Investigation LevelRAPRemediation Action PlanSILSoil Investigation Level <trr>RAPR</trr>		-
ARMCANZAgriculture and Resource Management Council of Australia and New ZealandASTAbove-ground Storage TankB(a)PBenzo(a)PyreneBGLBelow Ground LevelBHBoreholeBTEXBenzene, Toluene, Ethyl benzene, XyleneCOPCsContaminants of Potential ConcernCSMConceptual Site ModelCTContaminants of Potential CompoundsDPDeposited PlanDQOData Quality ObjectivesDSIDetailed Site InvestigationEILEcological Investigation LevelEPAEnvironmental Management PlanENMExcavated Natural MaterialESLEcological Screening LevelGMEGroundwater Investigation LevelGMEGroundwater Investigation LevelGMEGroundwater Monitoring EventHILHealth-based Investigation LevelGMEOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPriase Separated HydrocarbonsPSIPreliminary Site InvestigationQA/QCQuality Assurace / Quality ControlRAPRemediation Action PlanSULSoil Investigation LevelTRHTotal Recoverable HydrocarbonsPSIPreliminary Site InvestigationQA/QCQuality Assurace / Quality ControlRAPRemediation Action PlanSULSoil Investigation LevelTRHTot		5
ASTAbove-ground Storage TankB(a)PBenzo(a)PyreneBGLBelow Ground LevelBHBoreholeBTEXBenzene, Toluene, Ethyl benzene, XyleneCOPCsContaminants of Potential ConcernCSMConceptual Site ModelCTContaminant ThresholdsCVOCsChlorinated Volatile Organic CompoundsDPDeposited PlanDQOData Quality ObjectivesDSIDetailed Site InvestigationEILEcological Investigation LevelEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialESLEcological Screening LevelGILGroundwater Investigation LevelHLHealth-based Investigation LevelBMExcavated Natural MaterialESLEcological Screening LevelGILGroundwater Monitoring EventHILHealth-based Screening LevelSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHSPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmPats Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA/QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleu		
B(a)PBenzo(a)PyreneBGLBelow Ground LevelBHBoreholeBTEXBenzene, Toluene, Ethyl benzene, XyleneCOPCsContaminants of Potential ConcernCSMConceptual Site ModelCTContaminant ThresholdsCVOCsChlorinated Volatile Organic CompoundsDPDeposited PlanDQOData Quality ObjectivesDSIDetailed Site InvestigationEILEcological Investigation LevelEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialESLEcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Investigation LevelHSLHealth-based Screening LevelMSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA/QCQuality Assurance / Quality ControlRAPRemediation Action PlanSLSoil Investigation LevelTRHTotal Recoverable HydrocarbonsPSIPreliminary Site InvestigationQA/QCQuality Assurance / Quality ControlRAPRemediation Action PlanSLSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpp		
BGLBelow Ground LevelBHBoreholeBTEXBenzene, Toluene, Ethyl benzene, XyleneCOPCsContaminants of Potential ConcernCSMConceptual Site ModelCTContaminant ThresholdsCVOCsChlorinated Volatile Organic CompoundsDPDeposited PlanDQOData Quality ObjectivesDSIDetailed Site InvestigationEILEcological Investigation LevelEPAEnvironment Protection AuthorityEMPEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialESLEcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Investigation LevelHILHealth-based Screening LevelHSLHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA/QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage Tank<		
BHBoreholeBTEXBenzene, Toluene, Ethyl benzene, XyleneCOPCsContaminants of Potential ConcernCSMConceptual Site ModelCTContaminant ThresholdsCVOCsChloinated Volatile Organic CompoundsDPDeposited PlanDQOData Quality ObjectivesDSIDetailed Site InvestigationEILEcological Investigation LevelEPAEnvironment Protection AuthorityEMPEnvironment Protection AuthorityEMREcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Investigation LevelGMEGroundwater Monitoring EventHILHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site Investigation LevelRAPSoil Investigation LevelRAPRemediation Action PlanSILSoil Investigation LevelPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA/QCQuality Assurace / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage System <t< td=""><td>. ,</td><td></td></t<>	. ,	
BTEXBenzene, Toluene, Ethyl benzene, XyleneCOPCsContaminants of Potential ConcernCSMConceptual Site ModelCTContaminant ThresholdsCVOCsChlorinated Volatile Organic CompoundsDPDeposited PlanDQOData Quality ObjectivesDSIDetailed Site InvestigationEILEcological Investigation LevelEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialESLEcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Monitoring EventHILHealth-based Investigation LevelMSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSIPhase Separated HydrocarbonsPSIPhese Separated HydrocarbonsPSISoil Investigation LevelRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsPSIPhase Separated HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material		
COPCsContaminants of Potential ConcernCSMConceptual Site ModelCTContaminant ThresholdsCVOCsChlorinated Volatile Organic CompoundsDPDeposited PlanDQOData Quality ObjectivesDSIDetailed Site InvestigationEILEcological Investigation LevelEPAEnvironment Protection AuthorityEMPEnvironment Protection AuthorityEMPEnvironment Protection AuthorityEMPEnvironment Protection AuthorityEMREscavated Natural MaterialESLEcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Monitoring EventHILHealth-based Investigation LevelHSLHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSIPhase Separated HydrocarbonsPSIPhese Separated HydrocarbonsPSIPheilmiary Site InvestigationQA/CCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVi		
CSMConceptual Site ModelCTContaminant ThresholdsCVOCsChlorinated Volatile Organic CompoundsDPDeposited PlanDQOData Quality ObjectivesDSIDetailed Site InvestigationEILEcological Investigation LevelEPAEnvironment Protection AuthorityEMPEnvironment Protection AuthorityEMPEnvironment Protection AuthorityEMPEcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Investigation LevelGMEGroundwater Investigation LevelHILHealth-based Investigation LevelHSLHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA/QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material		
CTContaminant ThresholdsCVOCsChlorinated Volatile Organic CompoundsDPDeposited PlanDQOData Quality ObjectivesDSIDetailed Site InvestigationEILEcological Investigation LevelEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialESLEcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Monitoring EventHILHealth-based Investigation LevelHSLHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA/QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSEPAUnited States Environmental Protection Agency </td <td></td> <td></td>		
CVOCsChlorinated Volatile Organic CompoundsDPDeposited PlanDQOData Quality ObjectivesDSIDetailed Site InvestigationEILEcological Investigation LevelEPAEnvironment Protection AuthorityEMPEnvironment Protection AuthorityEMPEnvironmental Management PlanESLEcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Investigation LevelHILHealth-based Investigation LevelHILHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material		
DPDeposited PlanDQOData Quality ObjectivesDSIDetailed Site InvestigationEILEcological Investigation LevelEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialESLEcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Investigation LevelHILHealth-based Investigation LevelHSLHealth-based Investigation LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material		
DQOData Quality ObjectivesDSIDetailed Site InvestigationEILEcological Investigation LevelEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialESLEcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Investigation LevelHILHealth-based Investigation LevelHSLHealth-based Investigation LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material		-
DSIDetailed Site InvestigationEILEcological Investigation LevelEILEcological Investigation LevelEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialESLEcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Monitoring EventHLHealth-based Investigation LevelHSLHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material		•
EllEcological Investigation LevelEPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialESLEcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Monitoring EventHILHealth-based Investigation LevelHSLHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material		
EPAEnvironment Protection AuthorityEMPEnvironmental Management PlanENMExcavated Natural MaterialESLEcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Monitoring EventHILHealth-based Investigation LevelHSLHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA/QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material		-
EMPEnvironmental Management PlanENMExcavated Natural MaterialESLEcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Monitoring EventHILHealth-based Investigation LevelHSLHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	EPA	
ENMExcavated Natural MaterialESLEcological Screening LevelGILGroundwater Investigation LevelGMEGroundwater Monitoring EventHILHealth-based Investigation LevelHSLHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	EMP	,
GILGroundwater Investigation LevelGMEGroundwater Monitoring EventHILHealth-based Investigation LevelHSLHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	ENM	-
GMEGroundwater Monitoring EventHILHealth-based Investigation LevelHSLHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	ESL	Ecological Screening Level
HILHealth-based Investigation LevelHSLHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyVENMVirgin Excavated Natural Material	GIL	Groundwater Investigation Level
HSLHealth-based Screening LevelNSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyVENMVirgin Excavated Natural Material	GME	Groundwater Monitoring Event
NSWNew South WalesOEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	HIL	Health-based Investigation Level
OEHOffice of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyVENMVirgin Excavated Natural Material	HSL	Health-based Screening Level
PAHsPolycyclic Aromatic HydrocarbonsPIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyVENMVirgin Excavated Natural Material	NSW	New South Wales
PIDPhoto-ionisation DetectorppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)
ppmParts Per MillionPSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyVENMVirgin Excavated Natural Material	PAHs	Polycyclic Aromatic Hydrocarbons
PSHPhase Separated HydrocarbonsPSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	PID	Photo-ionisation Detector
PSIPreliminary Site InvestigationQA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	ppm	Parts Per Million
QA / QCQuality Assurance / Quality ControlRAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	PSH	Phase Separated Hydrocarbons
RAPRemediation Action PlanSILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	PSI	Preliminary Site Investigation
SILSoil Investigation LevelTRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	QA / QC	Quality Assurance / Quality Control
TRHTotal Recoverable HydrocarbonsUCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	RAP	Remediation Action Plan
UCLUpper Confidence LimitUPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	SIL	Soil Investigation Level
UPSSUnderground Petroleum Storage SystemUSEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	TRH	Total Recoverable Hydrocarbons
USEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVENMVirgin Excavated Natural Material	UCL	Upper Confidence Limit
UST Underground Storage Tank VENM Virgin Excavated Natural Material	UPSS	Underground Petroleum Storage System
VENM Virgin Excavated Natural Material	USEPA	United States Environmental Protection Agency
VOC Volatile Organic Compounds		
	VOC	Volatile Organic Compounds



Remediation Action Plan 15-33 Brighton Avenue, Croydon Park NSW Report No. E22142.E06_Rev1

FIGURES

- Approximate location of Diesel bowser Approximate location of Diesel UST Approximate site boundary _ _ _ **∂∂**
 - Approximate borehole location (EI, 2018a) Approximate monitoring well location (EI, 2018a)
 - Approximate borehole location (EI, 2018b)
- Approximate monitoring well location (EI, 2018b) Approximate asbestos hotspot location Approximate proposed borehole location

 \oplus

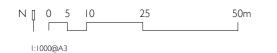
eiaustralia Suite 6.01, 55 Miller Street, PYRMONT 2009 Ph (02) 9516 0722 Fax (02) 9518 5088

Drawn:	SL	
Approved:	-	
Date:	1-09-19	15-
Approx Scale:	1:750 @ A3 or as shown	

Croydon 88 Pty Ltd Remediation Action Plan 5-33 Brighton Avenue, Croydon Park NSW

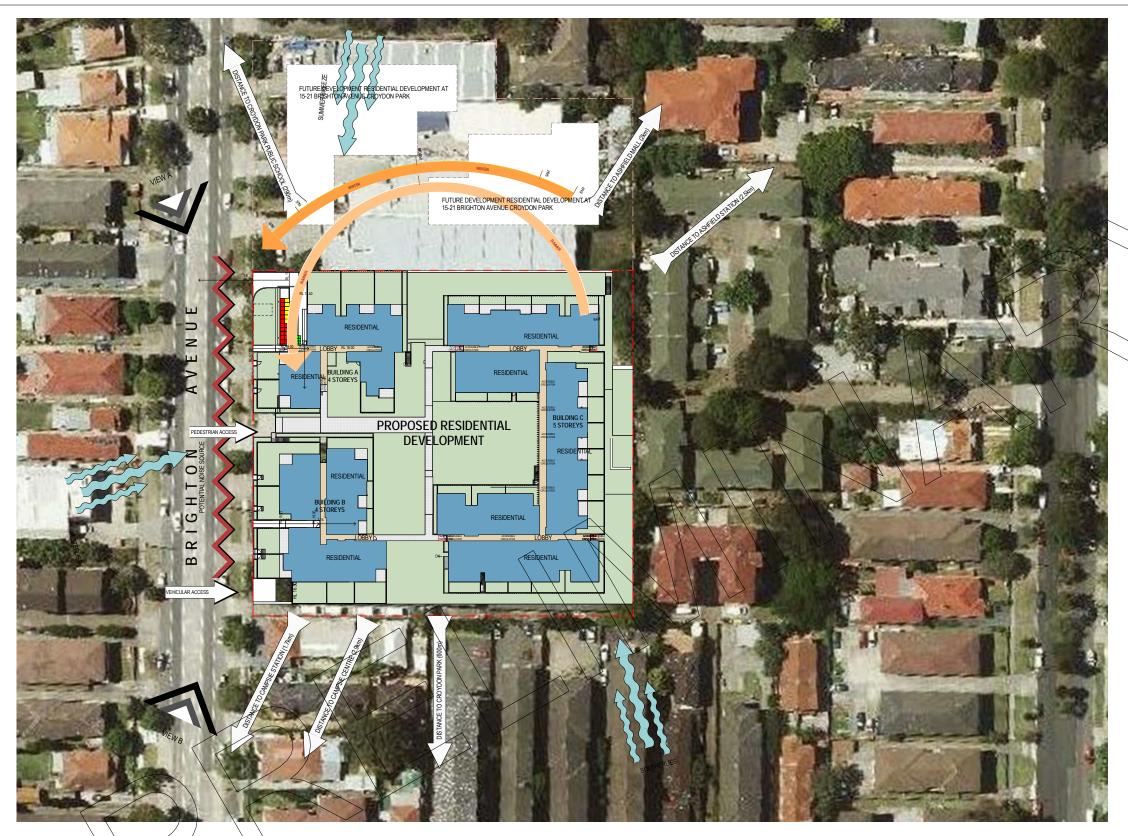
Site Plan

Project: E22142.E06_Rev0


APPENDIX A SITE SURVEY AND PROPOSED DEVELOPMENT PLANS

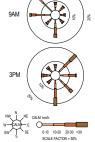
2.2 Site Context

- The Site is located in a predominantly residential area. The subject site and lots located to its north are isolated industrial lots surrounded by R4 High Density Residential zoning.
- There are 3 to 4 storey residential flat buildings located east and south of the Site.
- The area west of Site across Brighton Avenue predominantly includes 1-2 storey detached houses.
- Croydon Park retail strip, Croydon Park Public School and Uniting Church buildings are located at the corner of Brighton Avenue and Georges River Road, 70m north of Site.
- The Site has a 61.5m frontage to Brighton Avenue and 102m depth. The site area is approximately 6,770m²

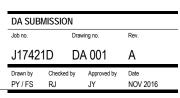


 ${f ae}$ design partnership

1 SITE ANALYSIS 1:500



3 STREET VIEW A - BRIGHTON AVENUE



4 STREET VIEW B - BRIGHTON AVENUE

WIND SPEED & WIND ROSE (ANNUAL)

SITE ANALYSIS

23-33 Brighton Avenue, Croydon Park NSW 2133 Drawing Title

PROPOSED RESIDENTIAL DEVELOPMENT

Projec

The copyright of this drawing together with any other documents prepared by chanine design (CD) remains the property of CD. CD grants licence for the use of this document for the purpose for which it is intended. The licence is not transferable without permission from CD. Nominated Architect: Jacob Yammine 8395, ABN 79 097 830 754

© Copyright

LEVEL 2, 60 PARK STREET SYDNEY NSW 2000 P: 02 9267 2000 W: www.cdarchitects.com.au

NOT TO SCALE

A 20.12.2017 DA Submission Rev. Date Description

NOTES

DRAWINGS TO BE READ IN CONJUNCTION WITH BUT NOT LIMITED TO ALL STRUCTURAL ENGINEERS, STORMWATER ENGINEERS, LANDSCAPE ARCHITECTS, AND OTHER ASSOCIATED PLANS & REPORTS

REFER TO THE BASIX REPORT FOR ADDITIONAL REQUIREMENTS TO THE ONES NOTED ON THE DRAWINGS.

ALL DIMENSIONS AND SETOUTS ARE TO BE VERIFIED ON SITE AND ALL OMISSIONS OR ANY DISCREPANCIES TO BE NOTIFIED TO THE ARCHITEOT. FIGURED DIMENSIONS TO BE USED AT ALL TIME DO NOT SCALE MEASUREMENTS OFF DRAWINGS.

DRAWINGS TO BE READ IN CONJUNCTION WITH BUT NOT LIMITED TO ALL STRUCTURAL ENGINEERS, STORMWATER ENGINEERS, LANDSCAPE ARCHITECTS, AND OTHER ASSOCIATED PLANS & REPORTS

REFER TO THE BASIX REPORT FOR ADDITIONAL REQUIREMENTS TO THE ONES NOTED ON THE DRAWINGS.

NOTES

ALL DIMENSIONS AND SETOUTS ARE TO BE VERIFIED ON SITE AND ALL OMISSIONS OR ANY DISCREPANCIES TO BE NOTIFIED TO THE ARCHITECT. FIGURED DIMENSIONS TO BE USED AT ALL TIME. DO NOT SCALE MEASUREMENTS OFF DRAWINGS.

А	20.12.2	2017	DA Subn	nission			
Rev.	Date		Descripti	on			
Scale m	2	4	8	3	12	16	
Ó		1:2	00 at A1	1:400	at A3		

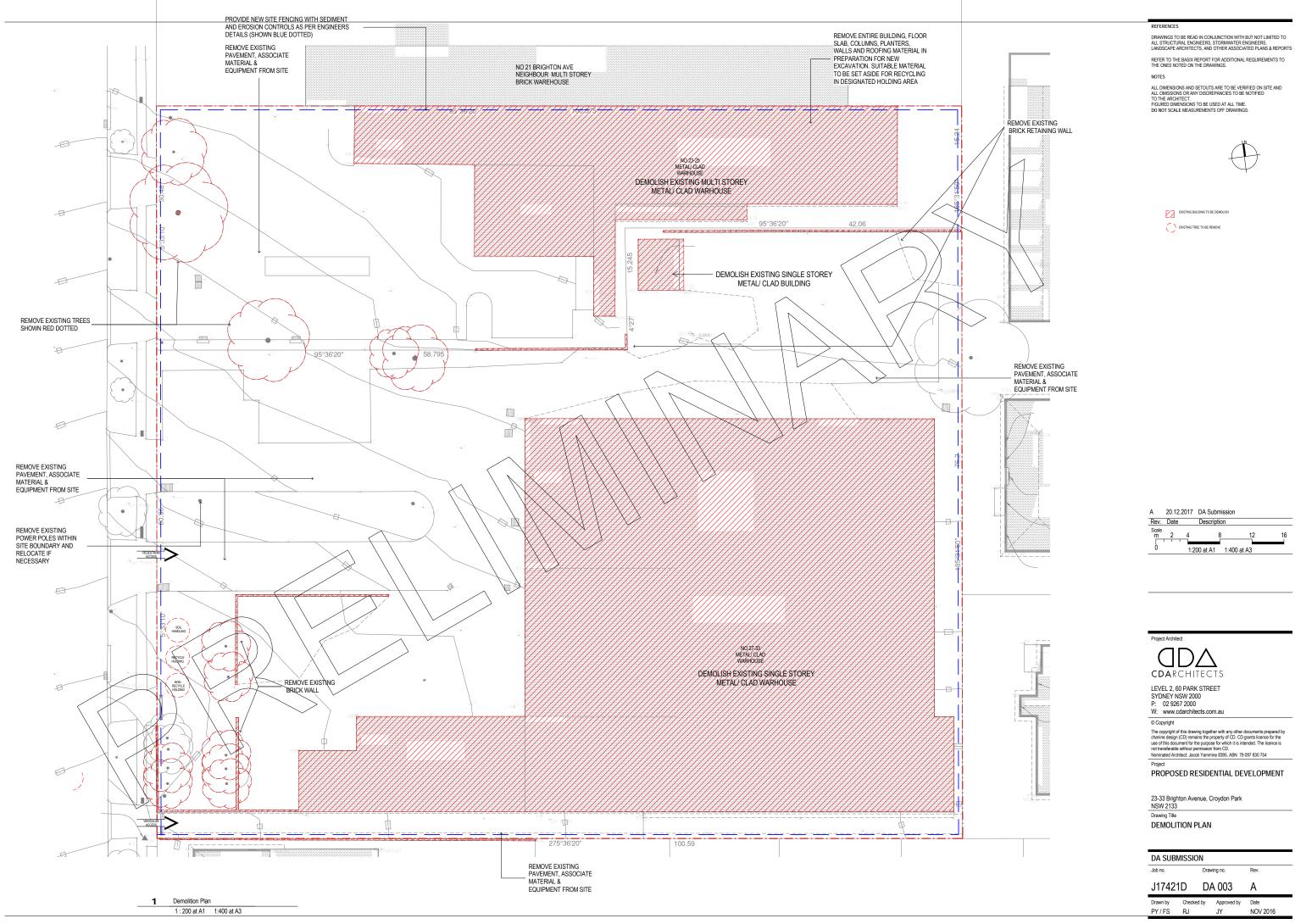
Project Architect

LEVEL 2, 60 PARK STREET

SYDNEY NSW 2000 P: 02 9267 2000 W: www.cdarchitects.com.au

© Copyright

The copyright of this drawing together with any other documents prepared by charine design (CD) remains the property of CD. CD grants licence for the use of this document for the purpose for which it is intended. The licence is not transferable whot permission from CD. Nominated Architect: Jacob Yammine 8395, ABN 79 097 830 754


PROPOSED RESIDENTIAL DEVELOPMENT

23-33 Brighton Avenue, Croydon Park NSW 2133

Drawing Title

SITE PLAN

DA SUBMISSION				
Job no.		Drawing no.	Rev.	
J1742	1D	DA 002	А	
Drawn by	Checked b	by Approved by	Date	
PY/FS	RJ	JY	NOV 2016	

REFER TO THE BASIX REPORT FOR ADDITIONAL REQUIREMENTS TO THE ONES NOTED ON THE DRAWINGS.

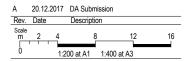
16

> Z

1:200 at A1 1:400 at A3

REFERENCES

DRAWINGS TO BE READ IN CONJUNCTION WITH BUT NOT LIMITED TO ALL STRUCTURAL ENGINEERS, STORMWATER ENGINEERS, LANDSCAPE ARCHITECTS, AND OTHER ASSOCIATED PLANS & REPORTS


REFER TO THE BASIX REPORT FOR ADDITIONAL REQUIREMENTS TO THE ONES NOTED ON THE DRAWINGS.

NOTES

ALL DIMENSIONS AND SETOUTS ARE TO BE VERIFIED ON SITE AND ALL OMISSIONS OR ANY DISCREPANCIES TO BE NOTIFIED TO THE ARCHITECT. FIGURED DIMENSIONS TO BE USED AT ALL TIME. DO NOT SCALE MEASUREMENTS OFF DRAWINGS.

(DA 300) WASTE CALCULATION

	RATE OF WASTE	TOTAL WASTE	BIN SIZE	PROPOSED
RESIDENTIA	L (173 UNITS)			
WASTE	REFER TO WASTE REPORT	16700L/WEEK	1100L	15
RECYCLE	REFER TO WASTE REPORT	16700L/WEEK	1100L	15
CODEEN	DECED TO WARTE DEDODT	MAY 12 DINC	2401	0

WASTE	REFER TO WASTE REPORT	16700L/WEEK	1100L	15
RECYCLE	REFER TO WASTE REPORT	16700L/WEEK	1100L	15
GREEN	REFER TO WASTE REPORT	MAX. 12 BINS	240L	9
PROPOSED	TOTAL			39

PRC	POSED TOTAL				39
	GENERAL WASTE BIN	RECY	CLE BIN	GREEN WA	STE BIN

CAR PARKING SCHEDULE veidontial

	io riigir bonony rio	oraornaar	
UNITS	RATE	REQUIRED	PROPOSED
RESIDENTIAL NO	IN ADAPTABLE (156 UNITS)		
1 BED (50)	1 SPACE / 1 UNIT	50	50
2 BED (106)	1.2 SPACE / 1 UNIT	127.2	127
RESIDENTIAL AD	APTABLE (17 UNITS)		
1 BED (17)	1 SPACE / 1 UNIT	17	17
VISITORS (173)	1 SPACE / 5 UNIT	34.6	35
CARWASH BAY		1	1
TOTAL		228.8	229

BICYCLE PARKING SCHEDULE

For R4 Zone - High Density Residential				
UNITS	RATE	REQUIRED	PROPOSED	
RESIDENTIAL (173UNITS)	1 SPACE / 5 UNITS	34.6	35	
VISITORS	1 SPACE / 10 UNITS	17.3	18	
TOTAL		51.9	56	

AUGUNO	LLOLIND
	Residential Parking 2400x5400
	Car Wash Parking 3400x5400
	Residential Accessible Parking 2400x5400
	Bicycle Parking 600x1200
	Visitor Parking 2400x5400

23-33 Brighton Avenue, Croydon Park NSW 2133 BASEMENT FLOOR PLAN

Drawing Title

Project Architect

 ΔDD

CDARCHITECTS

LEVEL 2, 60 PARK STREET

W: www.cdarchitects.com.au

SYDNEY NSW 2000

P: 02 9267 2000

© Copyright

Project

DA SUBMISSION Job no. Drawing no. Rev. J17421D DA 101 Α Drawn by Check PY / FS RJ Checked by Approved by Date NOV 2016 JY

The copyright of this drawing together with any other documents prepared by chanine design (CD) remains the property of CD. (CD grants licence for the use of this document for the purpose for which it is intended. The licence is not transferable whole permission from CD. Nominated Architect: Jacob Yammire 8395, ABN 79 097 830 754

PROPOSED RESIDENTIAL DEVELOPMENT

DRAWINGS TO BE READ IN CONJUNCTION WITH BUT NOT LIMITED TO ALL STRUCTURAL ENGINEERS, STORMWATER ENGINEERS, LANDSCAPE ARCHITECTS, AND OTHER ASSOCIATED PLANS & REPORTS

REFER TO THE BASIX REPORT FOR ADDITIONAL REQUIREMENTS TO THE ONES NOTED ON THE DRAWINGS.

NOTES

ALL DIMENSIONS AND SETOUTS ARE TO BE VERIFIED ON SITE AND ALL OMISSIONS OR ANY DISCREPANCIES TO BE NOTIFIED TO THE ARCHITECT. FIGURED DIMENSIONS TO BE USED AT ALL TIME. DO NOT SCALE MEASUREMENTS OFF DRAWINGS.

DA Submission		
Description		
8	12	16
200 at A1 1:400) at A3	
	8	Description 8 12

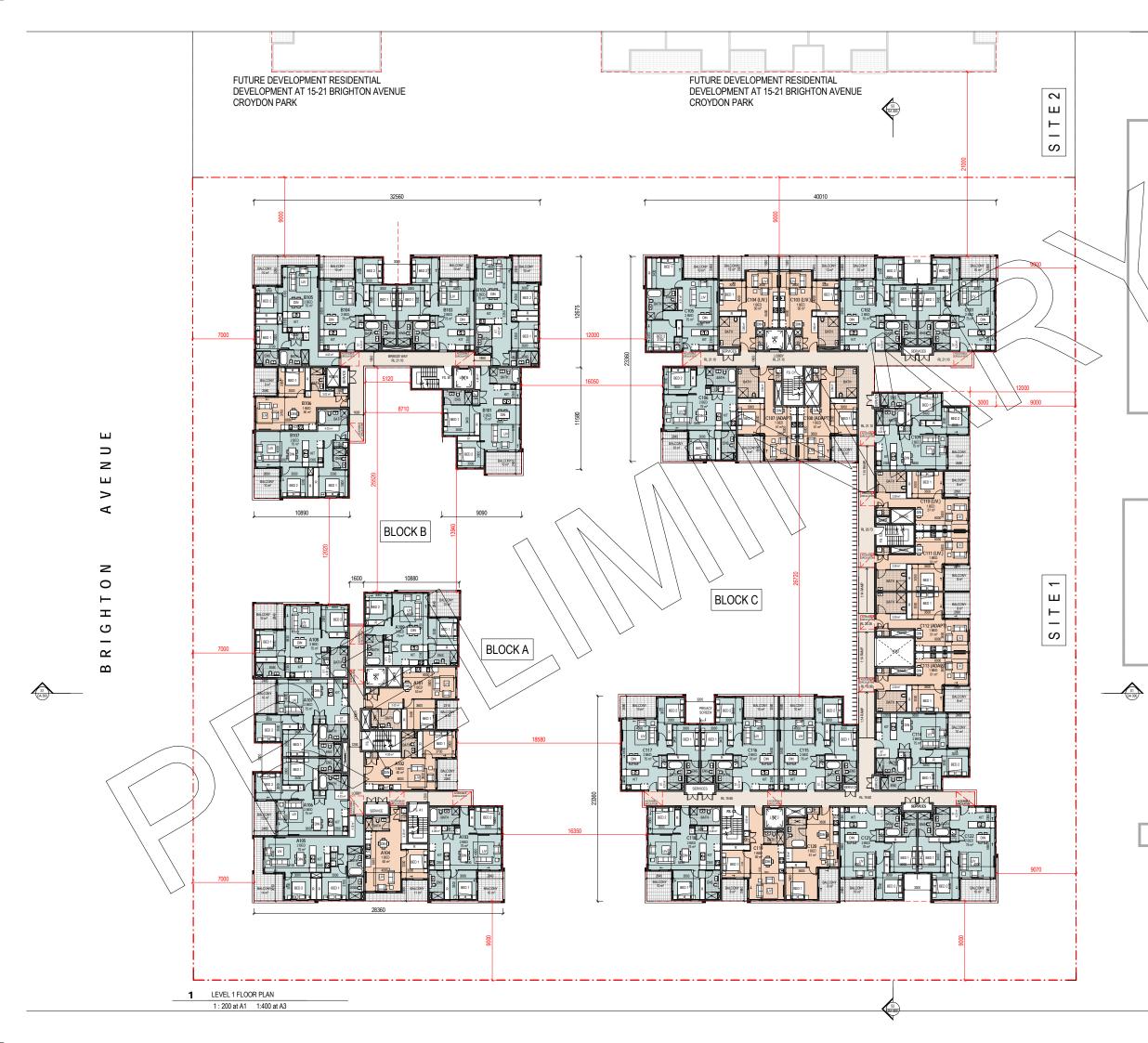
Project Architect

SYDNEY NSW 2000

P: 02 9267 2000 W: www.cdarchitects.com.au

© Copyright

The copyright of this drawing together with any other documents prepared by channe design (CD) remains the property of CD. CD grants licence for the use of this document for the purpose for which it is intended. The licence is not transferable who the purpose in from CD. Nominated Architect: Jacob Yammine 3395, ABN 79 097 830 754

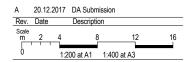

PROPOSED RESIDENTIAL DEVELOPMENT

23-33 Brighton Avenue, Croydon Park NSW 2133

GROUND FLOOR PLAN

Drawing Title

DA SUBMISSION Job no. Drawing no. J17421D DA 102 А Drawn by Checked by Approved by Date PY/FS RJ NOV 2016 .IY


DRAWINGS TO BE READ IN CONJUNCTION WITH BUT NOT LIMITED TO ALL STRUCTURAL ENGINEERS, STORMWATER ENGINEERS, LANDSCAPE ARCHITECTS, AND OTHER ASSOCIATED PLANS & REPORTS

REFER TO THE BASIX REPORT FOR ADDITIONAL REQUIREMENTS TO THE ONES NOTED ON THE DRAWINGS.

NOTES

ALL DIMENSIONS AND SETOUTS ARE TO BE VERIFIED ON SITE AND ALL OMISSIONS OR ANY DISCREPANCIES TO BE NOTIFIED TO THE ARCHITECT. FIGURED DIMENSIONS TO BE USED AT ALL TIME. DO NOT SCALE MEASUREMENTS OFF DRAWINGS.

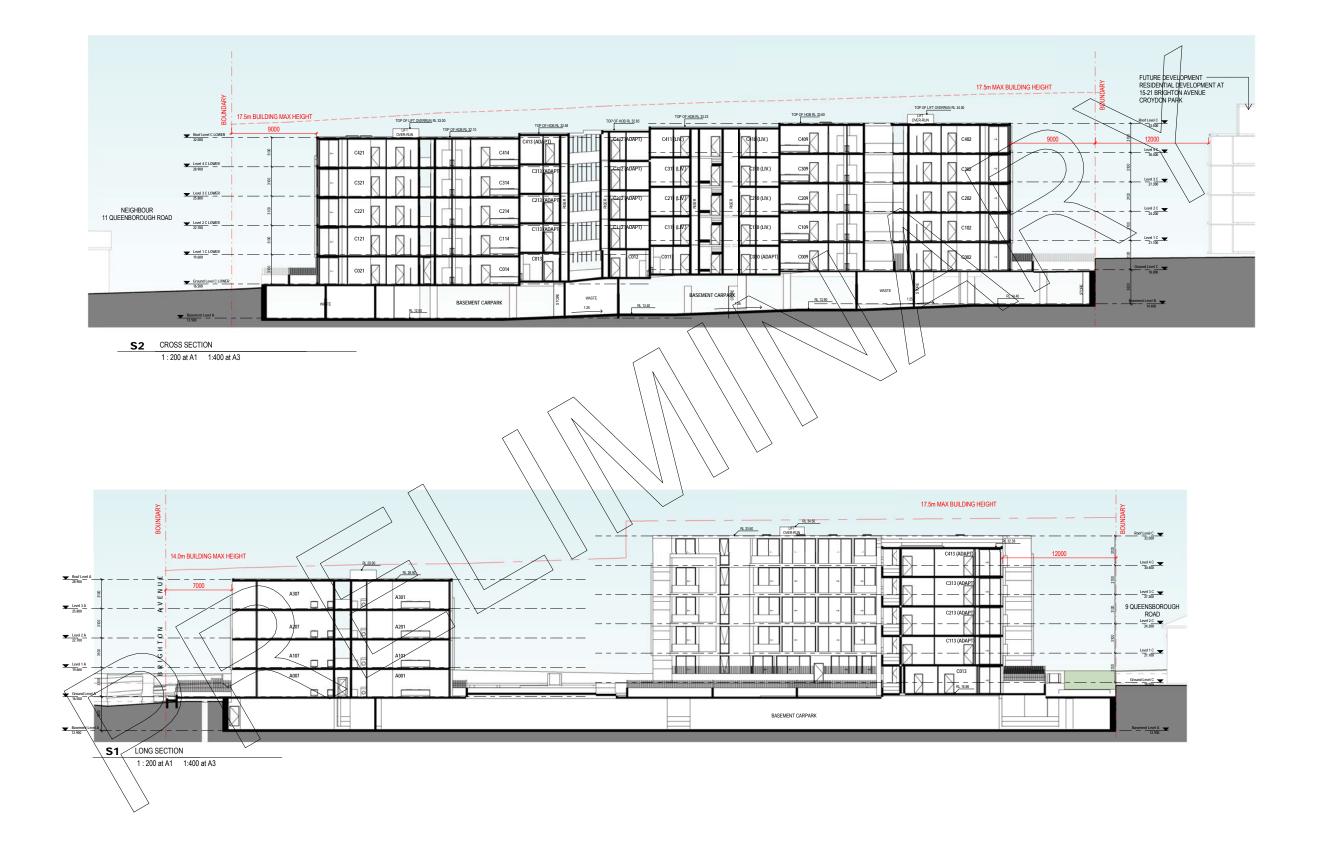
Project Architect

LEVEL 2, 60 PARK STREET

SYDNEY NSW 2000 P: 02 9267 2000 W: www.cdarchitects.com.au

© Copyright

The copyright of this drawing together with any other documents prepared by chanine design (CD) remains the property of CD. CD grants licence for the use of this document for the purpose for which it is intended. The licence is not transferable without permission from CD. Nominated Architect: Jacob Yammine 8395, ABN 79 097 830 754

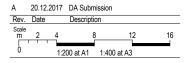

PROPOSED RESIDENTIAL DEVELOPMENT

23-33 Brighton Avenue, Croydon Park NSW 2133

Drawing Title

LEVEL 01 FLOOR PLAN

DA SUBMISSION											
Job no.	Dra	wing no.	Rev.								
J1742	1D D	A 103	А								
Drawn by PY / FS	Checked by RJ	Approved by JY	Date NOV 2016								



DRAWINGS TO BE READ IN CONJUNCTION WITH BUT NOT LIMITED TO ALL STRUCTURAL ENGINEERS, STORMWATER ENGINEERS, LANDSCAPE ARCHITECTS, AND OTHER ASSOCIATED PLANS & REPORTS

REFER TO THE BASIX REPORT FOR ADDITIONAL REQUIREMENTS TO THE ONES NOTED ON THE DRAWINGS.

NOTES

ALL DIMENSIONS AND SETOUTS ARE TO BE VERIFIED ON SITE AND ALL OMISSIONS OR ANY DISCREPANCIES TO BE NOTIFIED TO THE ARCHITECT. FIGURED DIMENSIONS TO BE USED AT ALL TIME. DO NOT SCALE MEASUREMENTS OFF DRAWINGS.

Project Architect

LEVEL 2, 60 PARK STREET

SYDNEY NSW 2000 P: 02 9267 2000

W: www.cdarchitects.com.au

© Copyright

The copyright of this drawing together with any other documents prepared by charine design (CD) remains the property of CD. CD grants licence for the use of this document for the purpose for which it is intended. The licence is not transferable whot permission from CD. Nominated Architect: Jacob Yammine 8395, ABN 79 097 830 754

Project

PROPOSED RESIDENTIAL DEVELOPMENT

23-33 Brighton Avenue, Croydon Park NSW 2133

Drawing Title

SECTIONS

DA SUBMISSION Job no. Drawing no. Rev. J17421D DA 300 Α Drawn by Check PY / FS RJ Checked by Approved by Date NOV 2016 JY

DRAWINGS TO BE READ IN CONJUNCTION WITH BUT NOT LIMITED TO ALL STRUCTURAL ENGINEERS, STORMWATER ENGINEERS, LANDSCAPE ARCHITECTS, AND OTHER ASSOCIATED PLANS & REPORTS

REFER TO THE BASIX REPORT FOR ADDITIONAL REQUIREMENTS TO THE ONES NOTED ON THE DRAWINGS.

NOTES

ALL DIMENSIONS AND SETOUTS ARE TO BE VERIFIED ON SITE AND ALL OMISSIONS OR ANY DISCREPANCIES TO BE NOTIFIED TO THE ARCHITEOT. FIGURED DIMENSIONS TO BE USED AT ALL TIME DO NOT SCALE MEASUREMENTS OFF DRAWINGS.

A 20.12.2017 DA Submission Rev. Date Description

NOT TO SCALE

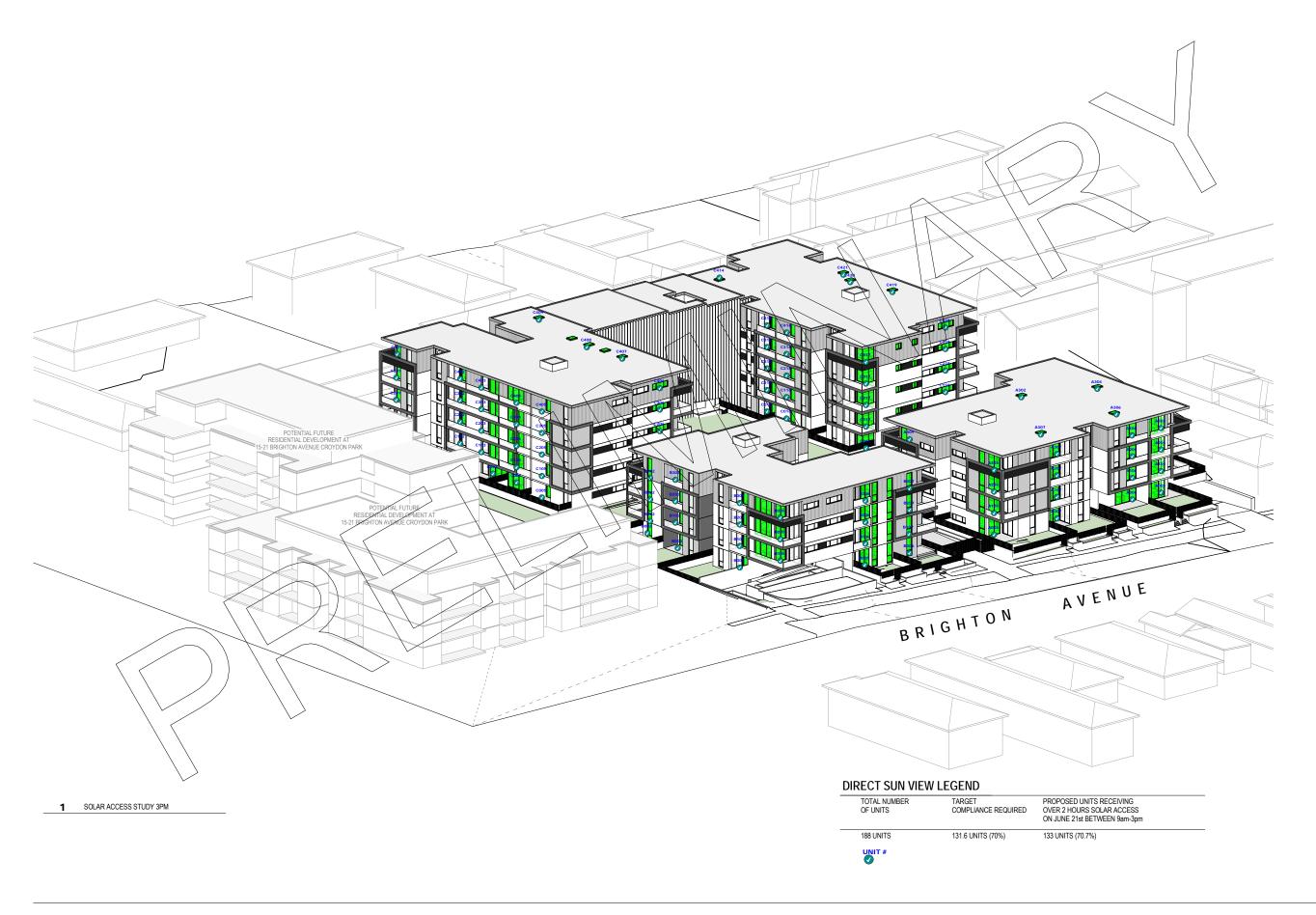
LEVEL 2, 60 PARK STREET SYDNEY NSW 2000 P: 02 9267 2000 W: www.cdarchitects.com.au

© Copyright

The copyright of this drawing together with any other documents prepared by charine design (CD) remains the property of CD. CD grants licence for the use of this document for the purpose for which it is intended. The licence is not transferable whot permission from CD. Nominated Architect: Jacob Yammine 8395, ABN 79 097 830 754

Project

PROPOSED RESIDENTIAL DEVELOPMENT


23-33 Brighton Avenue, Croydon Park NSW 2133

Drawing Title

SHADOW DIAGRAMS - SHEET 2

DA SUBMISSION Job no. Drawing no. Rev. J17421D DA 601 Α
 Drawn by
 Checked by
 Approved by
 Date

 PY / FS
 RJ
 JY
 NOV 2016

DRAWINGS TO BE READ IN CONJUNCTION WITH BUT NOT LIMITED TO ALL STRUCTURAL ENGINEERS, STORMWATER ENGINEERS, LANDSCAPE ARCHITECTS, AND OTHER ASSOCIATED PLANS & REPORTS

REFER TO THE BASIX REPORT FOR ADDITIONAL REQUIREMENTS TO THE ONES NOTED ON THE DRAWINGS.

NOTES

ALL DIMENSIONS AND SETOUTS ARE TO BE VERIFIED ON SITE AND ALL OMISSIONS OR ANY DISCREPANCIES TO BE NOTIFIED TO THE ARCHITECT. FIGURED DIMENSIONS TO BE USED AT ALL TIME. DO NOT SCALE MEASUREMENTS OFF DRAWINGS.

Project Architect JD

LEVEL 2, 60 PARK STREET SYDNEY NSW 2000 P: 02 9267 2000 W: www.cdarchitects.com.au

© Copyright

The copyright of this drawing together with any other documents prepared by chanine design (CD) remains the property of CD. (CD grants licence for the use of this document for the purpose for which it is intended. The licence is not transferable whole permission from CD. Nominated Architect: Jacob Yammire 8395, ABN 79 097 830 754

Project

PROPOSED RESIDENTIAL DEVELOPMENT

23-33 Brighton Avenue, Croydon Park NSW 2133

Drawing Title

SOLAR ACCESS STUDY 3PM

DA SUBMISSION Job no. Drawing no. Rev J17421D DA 716 Α Drawn by Checked by Approved by Date PY / FS RJ JY NOV 2016

A 20.12.2017 DA Submission Rev. Date Description

NOT TO SCALE

APPENDIX B BOREHOLE LOGS (EI, 2018A/B)

				str			25-33 Refe E237	3 Brigh r to Fig 75	nton A gure 2	estigation venue, Croydon Park NSW ? Contractor Geosense Dri Pty Ltd Drill Rig Hanjin D&B Inclination -90°	illing P		DREHOLE: BH1M Sheet 1 OF 1 Date Started 19/3/18 Date Completed 19/3/18 Logged MD Date: Checked Date:
F			Dri	lling		Sampling				Field Material Des			
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE		PIEZOMETER DETAILS
				0-				\boxtimes	-	FILL: Silty CLAY; medium to high plasticity, dark brown, no	-		Gatic Cover
EA LIB 103.GLB Log IS AUBOREHOLE 3 £23775 SOIL LOGS GPJ < <pre>CriawingFile> 10/04/2018 12:35 10.0.000 Daget Lab and in Situ Tool - DGD Lbb: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05</pre>	AD/I				<u>0.40</u>	BH1M_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 0.2 ppm BH1M_0.8-0.9 ES 0.80-0.90 m 0.80 m PID = 0.2 ppm				PICL: Sity CLAT, medium to high plasticity, dark brown, ito SANDSTONE; light orange-brown, weathered, no odour. Sity Classical Strength Plasticity, dark brown, ito Hole Terminated at 6.10 m Target Depth Reached. Borehole Converted into Monitoring Well.			Grout Grout SommuPVC Casing Bentonite Sand SommuPVC Screen
EIA LIB 1.03.GLB L			I	10 —		This boreh	nole log	g shou	ld be	read in conjunction with Environmental Investigations Austr	alia's	accor	mpanying standard notes.

Г

٦

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW

Position

Job No. Client R01 Croydon 88 Pty Ltd

Refer to Figure 2 E23775

Geosense Drilling Pty Ltd Contractor Drill Rig Hanjin D&B Inclination -90°

Sheet 1 OF 1 Date Started 19/3/18 Date Completed 19/3/18 Logged MD Checked

BOREHOLE: BH2

Date: Date:

		Dril	ling		Sampling				Field Material Desc	riptic	on	
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
		E	0.0	0.00	BH2_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 0.2 ppm			-	FILL: Clayey SAND; fine to coarse grained, dark brown, with angular to sub-angular gravels, no odour.	-	-	FILL -
AD/T	-	GWNE		0.30	BH2_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 0.3 ppm		<u>}</u>	CI- CH	Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour.	м	-	RESIDUAL SOIL
5 Prj: EIA 1.03 2014-07-05			-						Hole Terminated at 0.60 m Target Depth Reached. Backfilled with Drilling Spoil.			-
EA LIB 103 GLB Log IS AU BOREHOLE 3 E2375 SOIL LOGS GPJ < <drawingfile> 1004/2018 12:35 10.0000 Dargel Lab and In Situ Tool - DGD LID: EIA 1.03 2014-07:05 Pr; EIA 1.03 2014-07-05</drawingfile>			1.0									-
r5 SOIL LOGS.GPJ < <drawingfile>> 10/04/2018 12:35 10.0.0</drawingfile>			1.5									-
EIA LIB 1.03.GLB Log IS AU BOREHOLE 3 E237.			2.0		This borehold	e log	should	d be	read in conjunction with Environmental Investigations Austra	alia's a	accon	

Project
Project

Location 25-33 Brighton Avenue, Croydon Park NSW

Position

Job No. Client

Refer to Figure 2 E23775 R01 Croydon 88 Pty Ltd

Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B -90° Inclination

Sheet		1 OF	1
Date Sta	irted	19/3/18	3
Date Co	mpleted	19/3/18	3
Logged	MD	Date:	

BOREHOLE: BH3

ML Date: Checked Date:

Drilling					Sampling		Field Material Description						
	METHOD			DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			- 0.0	-	BH3 0.3-0.4 ES 0.30-0.40 m 0.30 m PID = 0.2 ppm					-			
	AD/T	GWNF	0.5	-						м	-		_
10 ZU 14-07-00 FTJ; EIN 1:00 ZU 14-07-00			1.0 —	-	BH3_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 0.3 ppm								-
				-									
o.o.ooo baga cabain ii				-									
			1.5 —										-
OIL LUGG.GF & THUMMER													
A LID 1.00.044 409 401			2.0		This borehole	e log	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accon	npanying standard notes.	

						E	BORE	EHOLE:	BH4M
contamination Remediation Ge	Project Location Position Job No. Client	Detailed Site In 25-33 Brighton Refer to Figure E23775 R01 Croydon 84	Avenue, Croydon Park 2	NSW Contractor Drill Rig Inclination	Geosense Dri Hanjin D&B -90°	lling Pty I	Ltd	Sheet Date Started Date Completed Logged MD Checked	1 OF 1 19/3/18 19/3/18 Date: Date:
Drilling	Sampling			Fie	Id Material Des				
	SAMPLE OR FIELD TEST RL	RECOVERED GRAPHIC LOG USCS SYMBOL	SOIL/ROCK	MATERIAL DESCR	RIPTION	MOISTURE CONDITION CONSISTENCY	DENSITY BH4M	PIEZOMETER D tatic Water Level	ETAILS
ao ILUE EIX 103 2014/2015 FEX 103 2014/2015	2.30 BH4M_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 0.3 ppm BH4M_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 0.4 ppm PID = 0.4 ppm 6.00 This bore		FILL: Clayey SAND; fir angular to sub-angular Silty CLAY; medium to orange, no odour. Hole Terminated at 6.0 Target Depth Reached Borehole Converted in)0 m I. to Monitoring Well.	prown, mottled				Gatic Cover Grout 50 mm uPVC Casing Bentonite Sand 50 mm uPVC Screen

ſ

Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

10 0 000

0/04/2018 12:35

EIA LIB 1.03.GLB Log IS AU BOREHOLE 3 E23775 SOIL LOGS.GP.

ProjectDetailed Site InvestigationLocation25-33 Brighton Avenue, Croydon Park NSW

Location 25-33 Brighton Av Position Refer to Figure 2

Position Job No.

Client

E23775 R01 Croydon 88 Pty Ltd Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°
 Sheet
 1 OF 1

 Date Started
 19/3/18

 Date Complete
 19/3/18

 Logged
 MD

 Checked
 Date:

		Dri	lling		Sampling				Field Material Desc	ripti	on		_
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE		STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0	-				-	FILL: Clayey SAND; fine to coarse grained, dark brown, with angular to sub-angular gravels, no odour.	-		FILL	
			-	-	BH5_0.3-0.4 ES 0.30-0.40 m 0.30 m PID = 0.3 ppm			•					
AD/T	-	GWNE	0.5	0.60				CI- CH	Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour.	- M	-	RESIDUAL SOIL	-
			-	-					orange, no odour.				
				1.00	BH5_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 0.6 ppm				Hole Terminated at 1.00 m				
			-						Target Depth Reached. Backfilled with Drilling Spoil.				
			-										
			1.5 —	-									-
			-	-									
			-	-									
			-	-									
			2.0 —		This borehol	e lo	 g shoul	d be	read in conjunction with Environmental Investigations Austra	 alia's	accor	mpanying standard notes.	

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW

Position Job No. Client

Refer to Figure 2 E23775 R01 Croydon 88 Pty Ltd

Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°

1 OF 1 Sheet Date Started Date Completed 19/3/18 Logged MD Date: Checked

BOREHOLE: BH6

19/3/18 Date:

									inclination -90			Checked Date.	=
	_		lling		Sampling	_	<u> </u>		Field Material Desc	riptic	on N		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0 —			Γ	\boxtimes	-	CONCRETE: 200mm thick.			CONCRETE HARDSTAND	Т
			-	0.20						-			
			-		BH6_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 0.2 ppm		\bigotimes	-	FILL: Clayey SAND; fine to coarse grained, dark brown, with angular to sub-angular gravels, no odour.			FILL	
AD/T	-	GWNE	0.5 —								-		-
			-	0.60				CI- CH	Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour.			RESIDUAL SOIL	+
			-						orange, no odour.	M			
EA 1.03 2014-07-05			-		BH6_0.9-1.0 ES 0.90-1.00 m								-
. 1.03 2014-07-05 Prj: E			1.0—	1.10	0.90 m PID = 0.2 ppm								-
EA LIB 103 GIB Log IS AUBOREHOLE 3 E23775 SOIL LOGS GPJ < <drawingfile>> 1004/2018 12:35 10.0000 Dagel Lab and In Sin Tool - DGD Lb: EA 1.03 2014-07:05 Pr; EIA 1.03 2014-07-05</drawingfile>									Hole Terminated at 1.10 m Target Depth Reached. Backfilled with Drilling Spoil.				
0 Datgel Lab and In			-										
12:35 10.0.00			-										
> 10/04/2018			1.5 —										-
< <drawingfile></drawingfile>			_										
SOIL LOGS.GPJ			-										.
HOLE 3 E23775			_										
og IS AU BORE			_										.
V LIB 1.03.GLB L(I	2.0—	I	This borehole	e log	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accon	npanying standard notes.	
<u></u>													-

Contamination Remediation Geotechni	Location 25-33 Position Refer Job No. E237	led Site Investigation 8 Brighton Avenue, Croydon Park NSW • to Figure 2 75 Croydon 88 Pty Ltd	Contractor Geosense Drilli Drill Rig Hanjin D&B Inclination -90°		Sheet Date Started Date Completed Logged MD Checked	1 OF 1 19/3/18
Drilling	Sampling		Field Material Descr	iption		
METHOD PENETRATION RESISTANCE WATER WATER (metres)	SAMPLE OR FIELD TEST	C LOG C LOG C LOG C LOG C LOG C C C LOG C C C C C C C C C C C C C C C C C C C	RIAL DESCRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY DENSITY		TAILS
	BH7M_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 0.2 ppm BH7M_0.9-1.0 ES 0.90 m PID = 0.2 ppm BH7M_1.4-1.5 ES 1.40-1.50 m 1.40 m PID = 0.2 ppm	- CONCRETE: 200mm thick. - FILL: Clayey SAND; fine to corangular gravels - Silty CLAY; medium to high pl - CH - Silty CLAY; medium to high pl - CH - Silty CLAY; medium to high pl - CH - SHALE; weathered, no odour. - - - SHALE; weathered, no odour. - - -	asticity, dark brown, mottled	M W W		Gatic Cover Grout Grout So mm uPVC Casing Bentonite Sand So mm uPVC Screen

Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

10.0.000

10/04/2018 12:35

<<DrawingFile>>

IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ

8

FIA LIB 1 03 GLB

Project Detailed Site Investigation

 Location
 25-33 Brighton Avenue, Croydon Park NSW

 Position
 Refer to Figure 2

Position Job No.

Client

E23775 R01 Croydon 88 Pty Ltd Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90° Sheet1 OF 1Date Started19/3/18Date Completed19/3/18Logged MDDate:

Date:

BOREHOLE: BH8

Checked

Drilling Sampling **Field Material Description** PENETRATION RESISTANCE JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS GRAPHIC LOG SAMPLE OR FIELD TEST SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0.0 CONCRETE HARDSTAND CONCRETE: 200mm thick. -0.20 FILL FILL: Clayey SAND; fine to coarse grained, dark brown, with angular to sub-angular gravels, no odour. BH8_0.3-0.4 ES QD1 QT1 0.30-0.40 m 0.30 m PID = 0.2 ppm 0.5 0.60 RESIDUAL SOIL Cŀ Silty CLAY; medium to high plasticity, dark brown, mottled |×| CH orange, no odour. GWNE AD/T М BH8_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 0.4 ppm 1.0 x 1.40 Hole Terminated at 1.40 m Target Depth Reached. Backfilled with Drilling Spoil. 1.5 2.0 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW

Position

Job No.

Client

Refer to Figure 2 E23775 R01 Croydon 88 Pty Ltd

Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°

Date Started Logged MD Checked

Sheet

1 OF 1 19/3/18 Date Completed 19/3/18 Date: Date:

		Dril	ling		Sampling				Inclination -90° Field Material Desci	intic	<u></u>		
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL			CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0	0.20	BH9_0.3-0.4 ES 0.30-0.40 m 0.30 m PID = 0.6 ppm			-	CONCRETE: 200mm thick. FILL: Gravelly SAND; fine to coarse grained, dark orange, angular to sub-angular gravel, no odour.	-		CONCRETE HARDSTAND	
			- 0.5	0.60				-	FILL: Silty CLAY; medium to high plasticity, dark brown, with angular to sub-angular gravels and trace sandstone, no odour.				-
	-	GWNE	- 1.0		BH9_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 0.6 ppm					м	-		-
			- - 1.5	1.30	BH9_1.5-1.6 ES 1.50-1.60 m 1.50 m PID = 0.5 ppm			CI- CH	Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour.			RESIDUAL SOIL	
			-	1.70	ни – 0.3 ррп				Hole Terminated at 1.70 m Target Depth Reached. Backfilled with Drilling Spoil.				
			2.0 —		This borehold	e log	 g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's i	accor	npanying standard notes.	

10.0.000 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

10/04/2018 12:35

--Draw

EIA LIB 1.03. GLB Log IS AU BOREHOLE 3 E23775 SOIL LOGS. GPJ

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW

Position Job No. Client Refer to Figure 2 E23775 R01 Croydon 88 Pty Ltd

Contractor Geosense Drill Rig Hanjin D& Inclination -90°

Geosense Drilling Pty Ltd Hanjin D&B -90°
 Sheet
 1 OF 1

 Date Started
 19/3/18

 Date Complete
 19/3/18

 Logged
 MD

 Checked
 Date:

BOREHOLE: BH10M

		Dri	lling		Sampling				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOMETER DETAILS
F			0 —				XX	- 1	CONCRETE: 200mm thick.	-	· · · · ·	📅 🗸 🗸 🖛 Gatic Cover
ADIT	-			0.20	BH10M_0.3-0.4 ES 0.30-0.40 m 0.30 m PID = 0.7 ppm BH10M_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 0.7 ppm			CL- CH	CONCRETE: 200mm thick. FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour. Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour.	_	-	
			4 5 	6.10						w	-	Sand 50 mm uPVC Screen
									Hole Terminated at 6.10 m Target Depth Reached. Borehole Converted into Monitoring Well.			
					This borehole	e log	y shoul	ld be	read in conjunction with Environmental Investigations Austra	alia's a	accor	npanying standard notes.

Project Detailed Site Investigation

 Location
 25-33 Brighton Avenue, Croydon Park NSW

 Position
 Refer to Figure 2

Job No. Client E23775 R01 Croydon 88 Pty Ltd Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°

BOREHOLE: BH11

Sheet	1 OF 1
Date Started	19/3/18
Date Completed	19/3/18
Logged MD	Date:
Checked	Date:

Drilling Sampling **Field Material Description** PENETRATION RESISTANCE JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS GRAPHIC LOG SAMPLE OR FIELD TEST SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0.0 CONCRETE HARDSTAND CONCRETE: 200mm thick. -0.20 FILL FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour. BH11_0.3-0.4 ES 0.30-0.40 m 0.30 m PID = 0.6 ppm 0.5 0.60 RESIDUAL SOIL Cŀ Silty CLAY; medium to high plasticity, dark brown, mottled |×| ĊН orange, no odour. '<u>₹</u>' GWNE AD/T -Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 Μ BH11_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 0.5 ppm 1.0 10.0.000 10/04/2018 12:35 x 1.50 -1.5-Hole Terminated at 1.50 m Target Depth Reached. Backfilled with Drilling Spoil. <<DrawingFile>> IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ 8 2.0 FIA LIR 1 03 GI B 1 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

Project Detailed Site Investigation

 Location
 25-33 Brighton Avenue, Croydon Park NSW

 Position
 Refer to Figure 2

Job No. Client E23775 R01 Croydon 88 Pty Ltd Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°
 Sheet
 1 OF 1

 Date Started
 19/3/18

 Date Complete
 19/3/18

 Logged
 MD

 Checked
 Date:

			Dril	ling		Sampling				Field Material Desc			
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
				0.0	0.20				-	CONCRETE: 200mm thick. FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour.	-		CONCRETE HARDSTAND
	-		Ш			BH12_0.5-0.6 ES 0.50-0.60 m							-
	AD/T	-	GWNE	-	0.70	0.50 m PID = 0.4 ppm			-	SANDSTONE; light orange-brown, weathered, no odour.	м	-	WEATHERED ROCK
tigel Lab and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05				- 1.0 —	1.10	BH12_1.0-1.1 ES 1.00-1.10 m 1.00 m PID = 0.6 ppm							-
atgel Lab and In Situ Tool - DGD Lib: EIA				-						Hole Terminated at 1.10 m Target Depth Reached. Backfilled with Drilling Spoil.			-
< <drawingfile>> 10/04/2018 12:35 10.0.000 De</drawingfile>				1.5—									-
OLE 3 E23775 SOIL LOGS.GPJ < <drav< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drav<>				-									-
EIA LIB 1.03.GLB Log IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ				2.0—		This borehole	e log	should	d be	read in conjunction with Environmental Investigations Austra	lia's a	accon	-

10.0.000 Datgel Lab and In Situ Tool - DGD | Llb: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

10/04/2018 12:35

--Draw

EIA LIB 1.03.GLB Log IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW

Position Job No. Refer to Figure 2 E23775

Client

R01 Croydon 88 Pty Ltd

 Contractor
 Geosense Drilling Pty Ltd

 Drill Rig
 Hanjin D&B

 Inclination
 -90°

 Sheet
 1 OF 1

 Date Started
 20/3/18

 Date Complete
 20/3/18

 Logged
 MD

 Checked
 Date:

BOREHOLE: BH13M

		Dril	ling		Sampling				Field Material Desc	ripti	on		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	PIEZOMETER DETAILS	
			0 —					-	CONCRETE: 200mm thick.	-		Gatic Cover	-
			-	0.20	BH13M_0.3-0.4 ES 0.30-0.40 m		\bigotimes	-	FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour.				
			-	0.00				-	SANDSTONE; light orange-brown, weathered, no odour.				
			1		BH13M_0.9-1.0 ES 0.90-1.00 m							Grout	-
			-	1.50			× ×	CL- CI	Silty CLAY; low to medium plasticity, orange mottled grey, no odour.			50 mm uPVC	
			2—				x x					Casing 50 mm uPVC Screen	-
			-				× ×						
			3-							м		Bentonite	-
AD/T	-		-	3.20			`	-	SHALE; weathered, no odour.		-		
			-										
			4										
			-									Sand	
			5—										-
		\square	-	5.50	BH13M_5.5-5.6 ES 5.50-5.60 m				From 5.5m, moderate hydrocarbon odour.	_	-		
			- 6 —		5.50 m PID = 64.1 ppm					w			_
			-	6.40									
			-						Hole Terminated at 6.40 m Refusal. Borehole Converted into Monitoring Well.				_
			7—										-
			-										
			8										-
			-										
			- 9 —										-
			-										
			-										
			10 —	·	This borehole	log	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's	acco	mpanying standard notes.	

Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

10.0.000

10/04/2018 12:36

<<DrawingFile>>

IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ

8

FIA LIR 1 03 GI B 1

Project Detailed Site Investigation

 Location
 25-33 Brighton Avenue, Croydon Park NSW

 Position
 Refer to Figure 2

Job No. Client

E23775 R01 Croydon 88 Pty Ltd Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°

Sheet	1 OF 1
Date Started	20/3/18
Date Completed	20/3/18

Date:

Date:

BOREHOLE: BH14

Logged MD

Checked

Drilling Sampling **Field Material Description** PENETRATION RESISTANCE JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS GRAPHIC LOG SAMPLE OR FIELD TEST SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0.0 CONCRETE HARDSTAND CONCRETE: 200mm thick. -0.20 CI-CH RESIDUAL SOIL Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour. BH14_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 2.2 ppm X 0.5 GWNE AD/T _ 0.80 W WEATHERED ROCK SANDSTONE; light orange-brown, weathered, no odour. 1.0 BH14_1.1-1.2 ES 1.10-1.20 m 1.10 m PID = 1.8 ppm 1.40 Hole Terminated at 1.40 m Target Depth Reached. Backfilled with Drilling Spoil. 1.5 2.0 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

10/04/2018 12:36 10.0.000 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

EIA LIB 1.03. GLB Log IS AU BOREHOLE 3 E23775 SOIL LOGS. GPJ <<DrawingFile>>

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW Position

Job No. Client

Refer to Figure 2 E23775 R01 Croydon 88 Pty Ltd

Contractor Hanjin D&B Drill Rig Inclination -90°

Geosense Drilling Pty Ltd

Sheet 1 OF 1 Date Started 20/3/18 Date Completed 20/3/18 Logged MD Date: Checked Date:

			Dril	ling		Sampling				Field Material Desci	iptic	n		_
	METHOD	PENE IRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
	METH	PENEL	WATE		0.20		RECO		· 미SCS	CONCRETE: 200mm thick. FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour. Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour.		CONS	OBSERVATIONS CONCRETE HARDSTAND FILL RESIDUAL SOIL	
1 Uarger Lab and In Situ 1001 - UGU LID: EIA 1.03 ZV14-U/-U5 Prf; EIA 1.03 ZV14-U/-U5	AD/T	-	GWNE			BH15_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 1.3 ppm					w	-		
: 3 E23/73 SUIL LUGS.GPJ < <uraningfile>> 10/04/2018 12:36 10.0.000</uraningfile>				1.5 	1.50					Hole Terminated at 1.50 m Target Depth Reached. Backfilled with Drilling Spoil.				
1.U3.GLB LOG IS AU BUREHULE				2.0 —		This borehol	e log	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a		npanying standard notes.	

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW

Position Job No. Client Refer to Figure 2 E23775 R01 Croydon 88 Pty Ltd

Contractor Geosense Drill Rig Hanjin D&I Inclination -90°

Geosense Drilling Pty Ltd Hanjin D&B -90°
 Sheet
 1 OF 1

 Date Started
 20/3/18

 Date Complete
 20/3/18

 Logged
 MD

 Checked
 Date:

			ling		Sampling				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0				\bigotimes	-	CONCRETE: 200mm thick.	-		CONCRETE HARDSTAND
			-	0.20			$\overset{\times}{\times}$	-	FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour.			FILL
					BH16_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 1.4 ppm							
AD/T	-	GWNE	-		BH16_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 1.2 ppm					м	-	
			1.0 — - -	1.00				-	SANDSTONE; light orange-brown, weathered, no odour.			WEATHERED ROCK
			- 	1.50	BH16_1.4-1.5 ES 1.40-1.50 m 1.40 m PID = 1.1 ppm				Hole Terminated at 1.50 m			
			-						Target Depth Reached. Backfilled with Drilling Spoil.			
			-									
1			2.0 —		This borehole	e log	shoul	d be	read in conjunction with Environmental Investigations Austra	lia's	accon	npanying standard notes.

Project Detailed Site Investigation

Location25-33 Brighton Avenue, Croydon Park NSWPositionRefer to Figure 2

R01 Croydon 88 Pty Ltd

Position Job No.

Client

E23775

Contractor Drill Rig Inclination

or Geosense Drilling Pty Ltd Hanjin D&B n -90°
 Sheet
 1 OF 1

 Date Started
 20/3/18

 Date Complete
 20/3/18

 Logged
 MD

 Checked
 Date:

			ling		Sampling			Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 —				-	CONCRETE: 200mm thick.			CONCRETE HARDSTAND
			-	-					-		
			-	0.20			-	FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, slight hydrocarbon		_	FILL
			-	-				odour.			
			-	-							
			0.5 —	-	PH17 0506ES						
			_		BH17_0.5-0.6 ES 0.50-0.60 m 0.50 m PID = 8.5 ppm						
			-								
			-	-							
AD/T	-	GWNE	-							-	
		G	1.0 —	-	BH17_1.0-1.1 ES 1.00-1.10 m 1.00 m				м		
			-	-	PID = 6.2 ppm						
			-	-							
			-	1.30			{ : -	SANDSTONE; light orange-brown, weathered, slight			WEATHERED ROCK
			-	-		· · · · · · · · · · · · · · · · · · ·	:	nyarocarbon odour.			
			1.5 —	-	BH17 1.5-1.6 ES		:				
			-	-	BH17_1.5-1.6 ES 1.50-1.60 m 1.50 m PID = 3.3 ppm		:				
			_			· · · · · · · · · · · · · · · · · · ·	:				
						· · · · · · · · · · · · · · · · · · ·	:				
			-	1.00		· · · · · · · · · · · · · · · · · · ·	:				
				1.90			•	Hole Terminated at 1.90 m Target Depth Reached. Backfilled with Drilling Spoil.			
			2.0 —		This borehole	log sho	uld be	read in conjunction with Environmental Investigations Austra	llia's a	accor	npanying standard notes.

IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ <<DrawingFile>>

8

EIA LIB 1.03.GLB 1

BOREHOLE: BH18

Project	Detailed Site	Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW Position Refer to Figure 2

Job No. Client

E23775 R01 Croydon 88 Pty Ltd Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°

Sheet	1	OF 1	
Date Sta	rted	20	0/3/18
Date Cor	npleted	20	0/3/18
Logged	MD	D	ate:
Checked	D	ate:	

1

Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) DEPTH RL 0.0 CONCRETE HARDSTAND CONCRETE: 200mm thick. -0.20 WEATHERED ROCK SANDSTONE; light orange-brown, weathered, no odour. GWNE AD/T М 0.5 BH18_0.5-0.6 ES 0.50-0.60 m 0.50 m PID = 1.8 ppm 0.70 Hole Terminated at 0.70 m Target Depth Reached. Backfilled with Drilling Spoil. 10/04/2018 12:36 10.0.000 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 1.0 -1.5 2.0 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW Position Refer to Figure 2

Job No. Client

E23775 R01 Croydon 88 Pty Ltd

Geosense Drilling Pty Ltd Contractor Drill Rig Hanjin D&B Inclination -90°

Sheet 1 OF 1 Date Started 20/3/18 Date Completed 20/3/18 Logged MD Date: Checked Date:

E			Dril	ling		Sampling			Field Material Description					
	MEIHOU	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
				0.0	0.20				-	CONCRETE: 200mm thick.	-		CONCRETE HARDSTAND	
T.C.V	AD/I	-	GWNE		-	BH19_0.5-0.6 ES 0.50-0.60 m 0.50 m PID = 2.2 ppm			-	FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour.		-	FILL	
00 Datget Lab and in Situ Tooi - DGD Lab: EIA 1.03 2014-07-05 Pt; EIA 1.03 2014-07-05				- 0.80 - 1.0 - BH 1.0 - HI - 1.0 - HI - HI	BH19_1.0-1.1 ES 1.00-1.10 m 1.00 m PID = 1.2 ppm		X	CŀCH	Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour.	- м		RESIDUAL SOIL		
EA LIB 103.GLB Log IS AUBOREHOLE 3 E2375 SOIL LOGS.GPJ < r				1.5	<u> 1.40 </u>					Hole Terminated at 1.40 m Target Depth Reached. Backfilled with Drilling Spoil.				
EIA LIB 1.03.GLB L				2.0—		This borehol	e log	shoul	d be	read in conjunction with Environmental Investigations Austra	lia's	accon	npanying standard notes.	

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW

Position Job No. Client Refer to Figure 2 E23775 R01 Croydon 88 Pty Ltd

Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90° Sheet1 OF 1Date Started20/3/18Date Completed20/3/18Logged MDDate:CheckedDate:

	Drilling					Sampling							
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
 <-ChranningFile>> 10/04/2018 12:36 10.0.000 Dage Lab and In Situ Tool - DGD Lb: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 	AD/T AD/T	PENET	GWNE GWNE		0.20				- naces	CONCRETE: 200mm thick. FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour. Silty CLAY; medium to high plasticity, dark brown, mottled orange, no odour. Silty CLAY; medium to high plasticity, dark brown, mottled and orange, no odour. Hole Terminated at 1.30 m Target Depth Reached. Backfilled with Drilling Spoil.	M MOIST CONDI	CONSI	CONCRETE HARDSTAND
EIA LIB 1.03.GLB Log IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ				2.0—		This borehole	e log	shoul	dbe	read in conjunction with Environmental Investigations Austra	lia's a	accon	npanying standard notes.

Project Detailed Site Investigation

Location 25-33 Brighton Avenue, Croydon Park NSW Position Refer to Figure 2

Job No. Client

E23775 R01 Croydon 88 Pty Ltd

Geosense Drilling Pty Ltd Contractor Drill Rig Hanjin D&B Inclination -90°

Sheet 1 OF 1 Date Started 20/3/18 Date Completed 20/3/18 Logged MD

BOREHOLE: BH21

Checked

Date: Date:

Ī			Dri	lling		Sampling			Field Material Description						
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
-	,т		NE	0.0					-	FILL: Clayey SAND; fine to coarse grained, dark brown, with ash and angular to sub-angular gravels, no odour.			FILL .		
-	AD/T	-	GWNE		0.50	BH21_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 2 ppm					м	-			
				-						Hole Terminated at 0.50 m Refusal. Backfilled with Drilling Spoil.					
07-05 Prj: EIA 1.03 2014-07-05				- 1.0 —											
pel Lab and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05				-											
10/04/2018 12:36 10.0.000 Datgel Lab and I				- 1.5 —									-		
< <drawingfile>></drawingfile>				-											
LIB 1.03.GLB Log IS AU BOREHOLE 3 E23775 SOIL LOGS.GPJ															
EIA LIB 1.03.GLB						This boreho	ole log) shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accon	npanying standard notes.		

BOREHOLE: BH101M

Project Detailed Site Investigation Location 15-21 Brighton Avenue, Croydon Park NSW

Position

Refer to Figure 2

Job No. Client

E23959.E02 **CROYDON 88 UNIT TRUST** Contractor Hart Geo Drill Rig Ute-Mounted Rig Inclination -90°

Sheet 1 OF 1 Date Started 22/8/18 Date Completed 22/8/18 Logged CM/CZ Checked

		Dri	lling		Sampling				Field Material Desc	riptic	n	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOMETER DETAILS
		_	0-	0.15				-	Concrete Hardstand	-		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
			-	0.10			X X	-	ILL itty CLA low to ediu lasti ity light rown to light grey with otted orange no odour.	м		
			-	0.50	BH101M_0.4-0.5 PID = 1.1 ppm		 X X X X		SHALE; Highly weathered, light brown to orange, no odour.			
			-		BH101M_0.6-0.7		× × × × × ×					
			1 —		PID = 1.3 ppm							
			-									
			-				× × × × × × × × × × × × × × × × × × ×					
			-	2.00			$\times \times$ $\times \times$ $\times \times$					
			2				× × × ×		Colour change to medium brown.	1		0000 €000 50mm uPVC
			-				$\hat{\mathbf{x}}$					Cost Cost casing
			-				× × × × × ×					
			3-				x x x x					
			-									
			-									
			-				× × × ×					Bentonite
AD/T		GWNE	4 —									
A	-	В	-							D		
			-				x x x x					
			-									
			5 —									
			-				× × × ×					
			-				× × × ×					
			-				× × × × × ×					Sand
			6 —				× × × ×					50mm uPVC screen
			-									
			-									
			7-				× × × ×					
			-				× × × × × ×					
			-									
			-				× × × ×					
			8 —				*****					
				8.20		+	××		Hole Terminated at 8.20 m L			
			-						Target Depth Reached.			
			-									
			9 —									
			-									
			-									
			-									
			10 —		This borehol	le lo	a shoi	lld he	e read in conjunction with EI Australia's accompanying sta	ndar		es.
						0	5 5.700					

BOREHOLE: BH102

Project	Detailed Site Investigation
Location	15-21 Brighton Avenue, Cr

15-21 Brighton Avenue, Croydon Park NSW

Position Refer to Figure 2

Job No. Client

E23959.E02 CROYDON 88 UNIT TRUST

Hart Geo Contractor Drill Rig Hand Auger Inclination -90°

Sheet	1 OF 1
Date Started	22/8/18
Date Completed	22/8/18
Logged CM/CZ	
Checked	

F	Drilling					Sampling		Field Material Description							
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
F				0 —	0.15		T		-	Concrete Hardstand	-		CONCRETE HARDSTAND	Τ	
	ΗA	-	GWNE	-	0.30			<u>م</u> . م	-	FILL: SAND; medium to coarse grained, brown, no odour.	М	-	FILL		
			Ŭ	-		BH102_0.2-0.3 PID = 1.4 ppm				Hole Terminated at 0.30 m L	1				
				-		PID = 1.4 ppm	4			Resfusal on Concrete Slab.					
				-										.	
				1 —										-	
				_											
				_										.	
				_										.	
				_											
				2—										_	
														.	
				_										.	
				۰ ۲											
				3—											
				4 —											
				4											
				_											
-07-05															
3 2014															
A 1.00				_											
and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Pŋ: EIA 1.03 2014-07-05				5 —										-	
-07-05				-											
3 2014															
EIA 1.0															
Lib: E				6 —											
DGD				0											
Tool -				_										.	
In Situ				_											
ib and				_											
tgel La				7—										_	
00 De															
10.0.0				_										.	
08:38				_										.	
/2018				_										.	
11/09				8—										_	
File>>				-											
rawing				-											
₽ ₽				_											
02.GP				-										.	
3959.E				9 —										_	
3 E2				-										.	
HOLE				-										.	
BORE				-										.	
IS AU				-										.	
B Log				10 —											
EIA LIB 1.03.GLB Log IS AUBOREHOLE 3 E23959.E02.GPJ < <drawingfile>> 11/09/2018 08:38 10.0.000 Datgei Lab</drawingfile>						This borehol	le lo	g shou	uld be	e read in conjunction with EI Australia's accompanying star	ndare	d note	es.		
A LIB 1															
Ξ														_	

BOREHOLE: BH103

Project Detailed Site Investigation Location

15-21 Brighton Avenue, Croydon Park NSW Refer to Figure 2

Position Job No.

E23959.E02 Client CROYDON 88 UNIT TRUST Contractor Hart Geo Drill Rig Hand Auger Inclination -90°

Sheet	1 OF 1
Date Started	22/8/18
Date Completed	22/8/18
Logged CM/CZ	
Checked	

ľ	Drilling					Sampling				Field Material Descr			
	METHOD	PENETRATION RESISTANCE		TH res)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
F				0 —	0.15			P	-	Concrete Hardstand	-		CONCRETE HARDSTAND
	Η	-	GWNE	_	0.30	BH103_0.2-0.3		2 	-	FILL: SAND; medium to coarse grained, brown, no odour.	М	-	FILL
			Ũ	-		PID = 0.9 ppm				Hole Terminated at 0.30 m L			-
				-			1			Resfusal on Road-base Gravel.			-
				-									-
				1 —									-
				-									-
				-									-
				-									
				-									-
				2—									-
				-									-
				-									-
				-									-
				-									-
				3—									-
				_									-
				-									-
				_									
				4									
				4									
				_									
and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Pŋ: EIA 1.03 2014-07-05				_									
03 201				_									
EIA 1.0				5 —									_
05 Prj:				_									.
14-07-0				-									.
.03 20				-									
: EIA				_									-
SD Lit				6 —									-
ol - DO				-									-
Situ To				_									-
and In				-									
el Lab				-									-
Datg				7—									-
0.0.000				-									-
3:38 10				-									-
2018 0				-									-
11/09/2													
-ile>>				8									
awingl				_									
Ū≫ [-									
02.GP,				_									.
3959.E				9 —									-
E 3 E 2				-									.
EHOLE				-									.
U BOR				-									.
9 IS A				-									.
SLB Lo				10 —			1	1				I	I
EIA LIB 103.GLB Log IS AUBOREHOLE 3 E23859.E02.GPJ < <drawingfile>> 11/08/2018 08:38 10.0.000 Daigel Lab</drawingfile>						This borehol	e lo	g shou	ld be	e read in conjunction with EI Australia's accompanying star	ndaro	d note	es.
IA LIB													
ш													

BOREHOLE: BH104

Project Detailed Site Investigation

Location 15-21 Brighton Avenue, Croydon Park NSW

Position Job No. Client

Refer to Figure 2 E23959.E02

CROYDON 88 UNIT TRUST

Contractor Hart Geo Drill Rig Ute-Mounted Rig Inclination -90°

Sheet 1 OF 1 Date Started 22/8/18 Date Completed 22/8/18 Logged CM/CZ Checked

		Dri	lling		Sampling			Field Material Desci					
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0	0.13				-	Concrete Hardstand	-		CONCRETE HARDSTAND	$\overline{}$
				0.50	BH104_0.2-0.3 PID = 1.4 ppm		0. 0.	-	FILL: Gravelly SAND; medium to coarse grained, reddish brown, with angular to subangular, medium to coarse gravels, no odour.	м		FILL	t
F		Щ						CL	CLAY: low to medium plasticity, brown with light grey to		1	RESIDUAL SOIL	T
AD/T	-	GWNE			BH104_0.7-0.8 PID = 1.2 ppm				orange, with with subangular to subrounded, medium to coarse gravels and charcoal, no odour.		-		
			1							м			
			-	1.50									
			-						Hole Terminated at 1.50 m L Target Depth Reached.				
			2—										
			-										
			3-										
			-										
			4										
			-										
4-07-05													
.03 201													
hj: EIA 1			5 —										
-07-05 F			-										
03 2014													
b: EIA 1													
DGD Li			6 —										
u Tool -													
nd In Sit			-										
el Lab ai			-										
00 Datg			7-										
3 10.0.0													
18 08:31			-										
11/09/20													
File>>			8										
Drawing			-										
CGPJ <			-										
3959.E02			9-										
E 3 E20													
REHOL			-										
S AU BO			-										
3 Log IS] ₁₀ _										
EA LIB 103 GLB Log IS AU BOREHOLE 3 E23899 E02 GPJ <-DawingFile>> 11/09/2019 06:38 10.0.000 Datgel Lab and in Stu Tool - DGD [Lib: EIA 1.02 2014-07-05 Py; EIA 1.03 2014-07-05					This boreho	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying star	ndaro	d note	es.	
EIA LIB													
													_

BOREHOLE: BH105

Project Detailed Site Investigation

Location 15-21 Brighton Avenue, Croydon Park NSW

Position Job No. Client

Refer to Figure 2 E23959.E02

CROYDON 88 UNIT TRUST

Contractor Hart Geo Drill Rig Ute-Mounted Rig Inclination -90°

Sheet	1 OF 1
Date Started	22/8/18
Date Completed	22/8/18
Logged CM/CZ	
Checked	

BOREHOLE: BH106

Project Detailed Site Investigation

Location 15-21 Brighton Avenue, Croydon Park NSW

Position Job No.

Client

Refer to Figure 2 E23959.E02

CROYDON 88 UNIT TRUST

Contractor Hart Geo Drill Rig Ute-Mounted Rig Inclination -90°

Sheet	1 OF 1
Date Started	22/8/18
Date Completed	22/8/18
Logged CM/CZ	
Checked	

Drilling	Sampling	Field Material Description							
METHOD PENETRATION WATER WATER WATER MADAD		GRAPHIC LOG USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
LOQ - W S - 0.30 - 0.30 - 0.70 - 0.70 - 1.00	BH106_0.3-0.4 PID = 2.3 ppm BH106_0.4-0.5 PID = 2.4 ppm		Concrete Hardstand FILL: SAND; medium to coarse grained, dark brown to grey, with dark grey staining, no odour . Sandy CLAY: low to medium plasticity, dark brown, medium to coarse sand, with angular to subangular, medium to coarse gravels, no odour.	- M M	-	CONCRETE HARDSTAND FILL RESIDUAL SOIL			
	_		CLAY: medium to high plasticity, brown with light grey to orange, no odour. Hole Terminated at 1.00 m L Target Depth Reached.						
10	This borehole log	g should b	e read in conjunction with EI Australia's accompanying star	ndaro	d note	ës.			

BOREHOLE: BH107

Project Detailed Site Investigation

Location 15-21 Brighton Avenue, Croydon Park NSW

Position Job No. Client Refer to Figure 2 E23959.E02

CROYDON 88 UNIT TRUST

Contractor Hart Geo Drill Rig Ute-Mounted Rig Inclination -90°

Sheet	1	OF	1	
Date Star	22	2/8/1	8	
Date Cor	2	2/8/	18	
Logged	CM/CZ			
Checked				

		Dri	lling		Sampling				Field Material Description					
METHOD	RESISTANCE	WATER	DEPTH (metres)	ПЕРТИ	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	DISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
AD/T M		GWNE		0.10 0.30	BH107_0.2-0.3 PID = 1.2 ppm BH107_0.7-0.8 PID = 1.2 ppm	2		S - CL	Concrete Hardstand FILL: Gravelly SAND; medium to coarse grained, light grey to dark brown, sub-angular to angular, medium to coarse gravels, no odour. CLAY: low to medium plasticity, dark brown with mottled reddish orange, with with subangular to subround, no odour.	<u>> 0</u> M M	-	CONCRETE HARDSTAND FILL RESIDUAL SOIL		
3869 E02 GPJ < <dawingfile>> 11/08/2018 08:38 10.0.000 Daigei Lab and in Situ Tool - DGD Lib: EIA 103 2014-07-05 Pi; EIA 103 2014-07-05</dawingfile>				1.00	BH107_0.7-0.8 PID = 1.2 ppm				reddish orange, with with subangular to subround, no odour. Hole Terminated at 1.00 m L Target Depth Reached.					
EA LIB 1.03.GLB Log IS AUBOREHOLE 3 E23959.E02.GPJ					This borehol	le lo	g shoi	uld be	e read in conjunction with EI Australia's accompanying sta	ndaro	d note	25.		

BOREHOLE: BH108M

Project	Detailed Site Investigation
Location	15-21 Brighton Avenue, Croydon Park NSW

on 15-21 Brighton Ave on Refer to Figure 2

Position Job No.

Client

E23959.E02 CROYDON 88 UNIT TRUST Contractor Hart Geo Drill Rig Ute-Mounted Rig Inclination -90°
 Sheet
 1 OF 1

 Date Started
 22/8/18

 Date Completed
 22/8/18

 Logged
 CM/CZ

 Checked

Drilling Sampling									Field Material Description							
ETHOD	PENETRATION RESISTANCE			DEPTH	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY DENSITY	PIEZOMETER DETAILS				
AD/T AD/T AD/T AD/T AD/T AD/T AD/T AD/T	PENETR PENETR PENETR	GWNE GWNE	HLG30 D	0.50 1.40 6.30	BH108M_0.3-0.4 PID = 1.6 ppm BH108M_0.9-0.8 PID = 1.9 ppm BH108M_1.1.7-1.8 PID = 1.1 ppm		××××××××××××××××××××××××××××××××××××××		SOIL/ROCK MATERIAL DESCRIPTION Concrete Hardstand FLL: Sandy CLAY; low to medium plasticity, dark brown, medium to coarse gravels, no odour. CLAY: low to medium plasticity, greenish brown, no odour. SHALE; weathered, light brown, no odour. SHALE; weathered, light brown, no odour. Hole Terminated at 6.30 m Kesfusal on Shale.			Bell Cuttings Somm uPVC casing Bentonite Somm uPVC casing So				
			9 — - - - 10 —	-	This boreho	ble lo	g shou	be blu	e read in conjunction with EI Australia's accompanying sta	Indar	d note	es.				

BOREHOLE: BH109

 Project
 Detailed Site Investigation

 Location
 15-21 Brighton Avenue, Croydon Park NSW

n Refer to Figure 2

Position Refer to

Job No. Client E23959.E02 CROYDON 88 UNIT TRUST Contractor Hart Geo Drill Rig Hand Auger Inclination -90°

Sheet	1 OF 1
Date Started	22/8/18
Date Completed	22/8/18
Logged CM/CZ	
Checked	

Γ			Dril	ling		Sampling				Field Material Desci				
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
F				0 —	0.10		P	×		Concrete Hardstand	-		CONCRETE HARDSTAND	Γ
	₹	-	GWNE	-	0.30	BH109_0.1-0.2			-	FILL: SAND; medium to coarse grained, yellow, no odour.	м	-	FILL	F
				-	-	PID = 1.1 ppm				Hole Terminated at 0.30 m L				Γ
				-	-					Resfusal on 0.3m Road Base Gravels.				
				_										
				4										
				1—]									-
				-										
				-										
				-										
				-										
				2—	-									-
				_	-									
				_	-									
				-]									
				3 —										-
				-										
				-										
				-	-									
				-	-									
				4 —										-
				_	-									
5				-	-									
4-07-0				_										
3 201				_										
IA 1.0				F										
Prj: E				5 —]									-
07-05				-	1									
2014-				-										
1.03				-										
b: Elø				-	-									
D LL				6—										-
- D0				-	-									
ftu Toe				-	-									
d In S				_	-									
ab an				-	-									
tgel L				7—	-									.
ă 00														
10.0.0														
8:38				-										
018 0				-]									
1/09/2				-	1									
e>>				8 —	1									-
ingFil				-	1									
<draw< td=""><td></td><td></td><td></td><td>-</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></draw<>				-	1									
¢ [di				-	-									
E02.G				-	-									
3959.				9 —	-									-
3 E2				-										
HOLE				_										
BORE														
S AU E				_										
31 60-1				-										
EA LIB 1.03 CLB Log IS AUBOREHOLE 3 E2369EE02.GPJ << DrawingFile>> 1108/2018.08:38 10.0.000 Datget Lab and in Stu Tool - DGD LIb: EIA 1.03 2014-07-45 Prj: EIA 1.03 2014-0				10 —	•					· · · · · · · · · · · · · · · · · · ·		•		
1.03						This borehole	log s	should	d be	read in conjunction with Environmental Investigations Austra	iia's a	accor	npanying standard notes.	
IA LIE														
шĻ														_

BOREHOLE: BH110

Project	Detailed Site Investigation
Location	15-21 Brighton Avenue, Cr

15-21 Brighton Avenue, Croydon Park NSW

Position Refer to Figure 2

Job No. Client

E23959.E02 CROYDON 88 UNIT TRUST Contractor Hart Geo and Auger Drill Rig Inclination -90°

ľ			Dril	ling		Sampling		Field Material Description								
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
F	A		Ψ	0 —	0.10			<i>P</i> P	: - ,	Concrete Hardstand	- [CONCRETE HARDSTAND			
	٩	-	GWNE	-	0.30	BH110_0.1-0.2		P L	-	FILL: SAND; medium to coarse grained, yellow, no odour.	м	-	FILL	E		
			0	-		PID =0.8 ppm				Hole Terminated at 0.30 m L Resfusal on 0.3m Road Base Gravels.						
				1 —										_		
				-										-		
				2—										-		
				-										-		
				3—										-		
				-										.		
				-												
				-										.		
				-												
				4 —										-		
				-										.		
-02				-												
014-07				-										-		
1.03 2(-										.		
j: EIA				5 —										-		
-05 Pr				-										.		
014-07				-										-		
1.03 2				_												
b: EIA				-										.		
and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05				6 —										-		
ol - D0				-												
Situ To				_												
ul bri				-												
el Lab &				-										.		
Datge				7—										-		
000.0.				_										•		
38 10				-												
018 08:				-										•		
1/09/20				-										·		
				8—										-		
vingFil				-										'		
<< Drav				-												
GPJ				-										'		
39.E02				-										1		
E239£				9 —										-		
OLE 3				-										1		
OREHC				-										'		
AUBC				-										.		
SI go.				-										'		
EIA LIB 1.03.GLB Log IS AU BOREHOLE 3 E23859.E02.GPJ <				10—		This boreho	ole lo	, ig shoi	uld be	e read in conjunction with EI Australia's accompanying sta	indar	d note	95.			
ΕIΑ																

BOREHOLE: BH111

Project Detailed Site Investigation

Location 15-21 Brighton Avenue, Croydon Park NSW

Position

Job No. Client

Refer to Figure 2 E23959.E02 CROYDON 88 UNIT TRUST

Contractor Hart Geo Drill Rig Ute-Mounted Rig Inclination -90°

Sheet	1 OF 1
Date Started	22/8/18
Date Completed	22/8/18
Logged CM/CZ	
Checked	

F			Dri	lling		Sampling				Field Material Desci	riptio	on		—
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
	AD/T ME					BH111_0.4-0.5 PID = 0.6 ppm BH111_0.8-0.9 PID = 0.8 ppm				Topsoil: Silty SAND; fine to medium grained, brown, with codiets, no odour. Concrete Hardstand FriLL: Clayey SAND; medium to coarse grained, reddish brown, low to medium plasticity, light brown to orange, no cdour. Hole Terminated at 1.00 m L Target Depth Reached.			TOPSOIL CONCRETE HARDSTAND FILL RESIDUAL SOIL	
EIA LIB 1.03.GLB Log				10—	<u> </u>	This boreho	le lo	 g shou	ıld be	e read in conjunction with I Australia's accompanying star	 ndar	 d note	es.	

BOREHOLE: BH112M

Project	Detailed Site Investigation
Location	15-21 Brighton Avenue, C

on 15-21 Brighton Avenue, Croydon Park NSW

Position Refer to Figure 2

Job No. Client E23959.E02 CROYDON 88 UNIT TRUST Contractor Hart Geo Drill Rig Ute-Mounted Rig Inclination -90° Sheet1OF1Date Started22/8/18Date Completed22/8/18LoggedCM/CZChecked

Drilling Sampling **Field Material Description** PIEZOMETER DETAILS PENETRATION RESISTANCE MOISTURE CONDITION CONSISTENCY DENSITY JSCS SYMBOL <u>ID St</u> BH112M Static Water Level RECOVERED GRAPHIC LOG SAMPLE OR FIELD TEST SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) 112M DEPTH RL 0 0.13 *P*., - Gatic Cover Concrete Hardstand FILL: Sandy CLAY; low to medium plasticity, dark brown 200 medium to coarse sand, with angular to subangular, medium to coarse gravels, no odour. BH112M 0.3-0.4 PID = 0.9 ppm М BH112M_0.8-0.9 1 PID = 0.8 ppm 1.40 SHALE; Highly weathered, light brown to orange, no odour. \$ Cuttings BH112M_1.7-1.8 2 PID = 0.7 ppm 50mm uPVC casing 3 AD/T Bentonite 4 D DGD | Lib: EIA 1.03 2014-07-05 Pri: EIA 1.03 2014-07-05 5 Sand 6 50mm uPVC screen - lool and In Situ ah a Datoel 7 000 0 01 W 7.50 02-00 0100/00/1 Hole Terminated at 7.50 m Target Depth Reached. L 8 F23959 F02 GP. 9 FHOLF 3 0 S 10 11B 1 03 GLB This borehole log should be read in conjunction with EI Australia's accompanying standard notes. ₫

BOREHOLE: BH113

Project Detailed Site Investigation Location

15-21 Brighton Avenue, Croydon Park NSW

Position Refer to Figure 2 Job No. E23959.E02

Client CROYDON 88 UNIT TRUST Contractor Drill Rig

Hand Auger Inclination -90°

Hart Geo

ľ			Dril	ling		Sampling				Field Material Descr				_
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
F				0 —	0.10		T		[/	Concrete Hardstand	-		CONCRETE HARDSTAND	Т
	ΗA	-	GWNE	_	0.35	BH113_0.2-0.3		<u>ک: م</u>	-	FILL: Clayey SAND; medium to coarse grained, reddish	м	-	FILL	
				-		PID = 1.0 ppm				brown, no odour. Hole Terminated at 0.35 m L	1			
				_						Resfusal on Road-base Gravel.				
				1 —										-
				-										
				-										
				-										
				2-										
				-										
				-										
				-										
				-										
				3—										-
				-										
				-										
				4 —										-
				-										
and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Pŋ: EIA 1.03 2014-07-05				_										
03 2014				-										
: EIA 1.				5—										-
7-05 Prj				-										
2014-0				-										
IA 1.03				-										
Lib: E				6										-
1- DGD				-										
Situ Too				-										
and In 3				-										
gel Lab				-										
100 Dat				7										
3 10.0.0				-										
18 08:35				-										
1/09/20				-										
le>> 1				8										-
awingF				-										
ld≫ L				-										
E02.GF				-										
23959.				9 —										-
OLE 3 1				-										
OREHC				-										
IS AU E				_										
EIA LIB 103.GLB Log IS AUBOREHOLE 3 E23859.E02.GPJ < <drawingfile>> 11/08/2018 08:38 10.0.000 Daigel Lab</drawingfile>				10 —										
1.03.GL						This boreho	le lo	g shou	uld be	e read in conjunction with EI Australia's accompanying star	ndaro	l note	es.	
EIA LIB														
				_	_									

202

BOREHOLE: BH114

Project **Detailed Site Investigation** Location

15-21 Brighton Avenue, Croydon Park NSW Refer to Figure 2

Position Job No.

Client

E23959.E02 **CROYDON 88 UNIT TRUST**

Contractor Hart Geo Drill Rig and Auger Inclination -90°

Sheet	1 OF 1
Date Started	22/8/18
Date Completed	22/8/18
Logged CM/CZ	
Checked	

Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **JSCS SYMBOL** RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0 0.10 0.20 CONCRETE HARDSTAND *P*. P. Concrete Hardstand GWNE М BH114_0.2-0.3 FILL: SAND: medium to coarse grained, yellow, no odour. ₹ Μ 0.40 PID = 1.4 ppm FILL: SAND medium to coarse grained, reddish brown, no CL RESIDUAL SOIL М 0.60 \odour. CLAY: low to medium plasticity, light grey to brown with orange, no odour. BH114_0.7-0.8 PID = 1.2 ppm Hole Terminated at 0.60 m L Resfusal on Clay. 1 2 3 4 Lab and In Situ Tool - DGD |Lib: EIA 1.03 2014-07-05 Pŋ; EIA 1.03 2014-07-05 5 6 Datgel 7 11/09/2018 08:38 10.0.000 8 noFile>> S AU BOREHOLE 3 E23959.E02.GPJ 9 8 10 FIA LIB 1 03 GLB This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

Contamination Remediation Geol	technical						
DRILLING/EXC	Ανατιοι	N METHOD		o oller		NO	o a er
	and Auger		RD	Rotary blade	or drag bit	NQ	Diamond Core - 47 mm
	iatube Cor	•	RT	Rotary Tricon		NMLC HQ	Diamond Core - 52 mm
		tive digging	RAB	Rotary Air Bla		HMLC	Diamond Core - 63 mm Diamond Core - 63mm
	uger Screv	-	RC	Reverse Circu	ilation	BH	Tractor Mounted Backhoe
	uger Drillin	g	PT	Push Tube		EX	Tracked Hydraulic Excavator
	-Bit	ADT	CT	Cable Tool Ri	g	EE	Existing Excavation
	C-Bit, e.g.		JET WB	Jetting Washbore or	Poilor		Excavated by Hand Methods
	ollow Auge	ATION RESISTA			Dallel		
-		Rapid penetration/	-	on nossible with	little effort from	n equinment u	heat
							ate effort from equipment used.
				•	•		
							ficant effort from equipment used.
						-	cceptable wear to equipment used.
		jective and are dependent and experience of the		-	ncluding equip	ment power a	nd weight, condition of
WATER							
	\mathbf{Y}	Water level at date	e shown		\triangleleft	Partial wate	er loss
	\triangleright	Water inflow				Complete v	vater loss
GROUNDWATE NOT OBSERVE		Observation of gro or cave-in of the b			ent or not, was	s not possible	e due to drilling water, surface seepage
GROUNDWATE							er could be present in less permeable left open for a longer period.
SAMPLING AN	D TESTI	NG					
4,7,11 N=18 seating 30/80mm RW HW HB		4,7,11 = Blows per Where practical ru Penetration occur Penetration occur Hammer double b	efusal oco rred unde rred unde	curs, the blows a r the rod weight r the hammer ar	and penetration only	n for that inter	ollowing 150mm val are reported
Sampling		Disturbed Comple					
DS BDS		Disturbed Sample Bulk disturbed Sa					
GS		Gas Sample	inpic				
NS		Water Sample					
U63		Thin walled tube	sample -	number indicate	s nominal sam	ple diameter	in millimetres
Testing							
FP		Field Permeability					
=VS					ected shear st	rength (sv = p	beak value, sr = residual value)
PID PM		Photoionisation D Pressuremeter te		U 11			
⊃P		Pressuremeter te Pocket Penetrom			strument readi	ng in kPa	
, NPT		Water Pressure te					
DCP		Dynamic Cone Pe		ter test			
СРТ		Static Cone Pene					
CPTu		Static Cone Pene			.,		
• • •							soil contamination assessment
R = 0		le evidence of conta			R = A		Iral odours identified
R = 1	-	vidence of visible co	ontaminati	on	R = B	-	atural odours identified
R = 2 R = 3		contamination	ation		R = C R = D		on-natural odours identified
		ant visible contamina	ลแบก		R = D	Suong non-i	natural odours identified
			005	- 0-11-0		_	
TCR = Total C	ore Recov	ery (%)		= Solid Core Re			QD = Rock Quality Designation (%)
$= \frac{\text{Length of core } r}{\text{Lengh of core}}$	recevered re run	x 100 =	$\frac{\Sigma \text{ Length}}{2}$	ofcylindrical co Lengh of core r	X	$100 = \frac{5}{2}$	CAxial Lenghts of core>100mm Lengh of core run x 100
MATERIAL BO							
= inferr	ed bound	ary -		 = probable b 	oundary	- 2	? ? ? ? = possible boundary

eiaust Contamination Remediation	ralia			USED C			SOIL DESCR AND TEST PI	
	FILL		.000.	RGANIC SC DL, OH or Pt		 	CLAY (CL, C	CI or CH)
		BLES or _DERS	**** **** ****	ILT (ML or N	1H)		SAND (SP c	or SW)
	GRAV GW)	/EL (GP or	Combination sandy clay	s of these basic s	symbols may b	be used to i	indicate mixed mater	ials such as
Soil is broad	ly classifie	d and described ir	STRATIGRAPH Borehole and Test aterial properties ar	Pit Logs using th	ne preferred m e field by visua	ethod give al/tactile me	n in AS1726 – 1993, ethods.	(Amdt1 –
PARTICLE	SIZE CH	ARACTERIST	cs	USCS SY	MBOLS			
Major Divi		Sub Division	Particle Size	Major D	Divisions	Symbol	Descrip	
	BOULDE	ERS	>200 mm	ي ع	o of are	GW	Well graded grav sand mixtures, lit	
	COBBL	ES	63 to 200 mm	LS iles	More than 50% of coarse grains are >2.mm	GP	Poorly graded gra	vel and gravel-
		Coarse	20 to 63 mm	0.0 ר	than 5(se grain >2.mm	_	sand mixtures, lit Silty gravel, gra	
GRAVE	EL	Medium	6 to 20 mm	than that	arse	GM	mixtur	es.
		Fine	2 to 6 mm	by c ater	Mo	GC	Clayey gravel, gra mixtur	
SAND		Coarse Medium	0.6 to 2 mm 0.2 to 0.6 mm	3 7 1 COARSE GRAINED SOILS More than 50% by dry mass less than 63mm is greater than 0.075mm	More than 50% of coarse grains are <2 mm	SW	Well graded sand sand, little or	no fines.
0, 112		Fine	0.075 to 0.2mm	m than	se gi 2 m	SP	Poorly graded sar sand, little or	
	SILT	-	0.002 to 0.075 m		re th oars	SM	Silty sand, sand	-silt mixtures.
	CLA		<0.002 mm	tha T	of c	SC	Clayey sand, mixtur	
	PLAS			.s nass than		ML	Inorganic silts of very fine sands, i	low plasticity, rock flour, silty
), parcent		c	H	FINE GRAINED SOILS More than 50% by dry mass less than 63mm is less than 0.075mm	Liquid Limit less < 50%	CL	or clayey fine sands. Inorganic clays of low to mediun plasticity, gravelly clays, sandy clays, silty clays.	
INDEX { I_0}	20	CL CI .P		FINE GRAINED More than 50% by ess than 63mm is	Liqu	OL	Organic silts and clays of low	d organic silty
QNI			он	LE G than	פ^ ר גיי	MH	Inorganic silts of	high plasticity.
STICITY	10 CL-M	OL or ML	MH	FII More less	Liquid Limit > than 50%	CH OH	Inorganic clays of high plasticity. Organic clays of medium to high plasticity.	
PLAST	20		60 70			PT	Peat muck and	other highly
		LIQUID LIMIT (WL),	percent				organic	soils.
MOISTUR	1							
Symbol D	Term Dry	Description Sands and grave	els are free flowing.	Clays & Silts ma	v be brittle or	friable and	powderv.	
M	Moist		than in the dry cond					
W	Wet		water. Sands and g					
		ohesive soils may than, « much less		n relation to plast	ic limit (WP) o	r liquid limi	t (WL) [» much great	er than,
CONSISTEN			-	DENSITY				
Symbol	Term		Shear Strength	Symbol	Term		Density Index %	SPT "N" #
VS S	Very So Soft		12 kPa 25 kPa	VL I	Very Loo Loose	se	< 15 15 to 35	0 to 4 4 to 10
F	Firm	25 to	50 kPa	MD	Medium De	nsity	35 to 65	10 to 30
St VSt	Stiff		100 kPa	D VD	Dense Vory Don		65 to 85	30 to 50
VSt H	Very Sti Hard		200 kPa 200 kPa		Very Den	30	Above 85	Above 50
In the absen	ce of test r	esults, consistenc	y and density may b	be assessed from by be subject to co	correlations vorrections for o	vith the obsoverburden	served behaviour of t pressure and equip	he material. ment type.
MINOR CO	MPONE	NTS						
Term		nent Guide e just detectable b	y feel or eye but soi	I properties little			oportion by Mass e grained soils: ≤ 5%)
Trace	or no diff	erent to general p	roperties of primary by feel or eye but s	component	e	Fine	grained soil: ≤15% grained soils: 5 - 12	
Some			roperties of primary				rained soil: 15 - 30%	

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

Symbol	Term	Point Load Index, Is ₍₅₀₎ (MPa) [#]	Field Guide
EL	Extremely Low	< 0.03	Easily remoulded by hand to a material with soil properties.
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.
#			

[#]Rock Strength Test Results

◀

Point Load Strength Index, $Is_{\rm (50)},$ Axial test (MPa)

Point Load Strength Index, Is(50), Diametral test (MPa)

Relationship between rock strength test result ($Is_{(50)}$) and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. UCS is typically 10 to 30 x $Is_{(50)}$, but can be as low as 5 MPa.

ROCK	MATER						
Sym	bol	Term	Field Guide				
RS		Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.				
EW	1	Extremely Weathered	Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.				
DW	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or				
	MW	Distinctly Weathered	may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.				
sw	1	Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.				
FR		Fresh	Rock shows no sign of decomposition or staining.				

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

Layering					Struc	ture				
Term		Descr	intion		Term				Spacing (mm	
Term		Desci	iption				nated			
Massive		No lay	ering apparent		Lami	·	naleu		6 – 20	
		Lovori	na juot vioiblo: litt	lo offoot on			bedded		20 - 60	
Poorly Devel	oped	proper	ng just visible; litt ties	le effect off	-	y bed			60 - 200	
		· ·	ng (bedding, folia	tion closurado)		um be			200 - 600	
Well Develop	bed		t; rock breaks mo			ly bec			600 - 2,000	
			el to layering				y bedded		> 2,000	
ABBREVIAT	IONS A		CRIPTIONS FO	R DEFECT TYP			, 			
Defect Type		Abbr.	Description							
Joint		JT	Surface of a fra or no tensile str acts as cement	ength. May be c	, formed without displacement, across which the rock has little closed or filled by air, water or soil or rock substance, which					
Bedding Par	ting	BP	Surface of fracture or parting, across which the rock has little or no tensile strength, para sub-parallel to layering/ bedding. Bedding refers to the layering or stratification of a rock indicating orientation during deposition, resulting in planar anisotropy in the rock materia							
Foliation		FL							endicular to the direction of (SH) and Gneissosity.	
Contact		CO		ween two types						
Cleavage		CL	Cleavage planes appear as parallel, closely spaced and planar su mechanical fracturing of rock through deformation or metamorphis							
Sheared Sea Zone (Fault)		SS/SZ	Seam or zone with roughly parallel almost planar boundaries of rock substance cut by closely spaced (often <50 mm) parallel and usually smooth or slickensided joints or cleavage planes							
Crushed Sea Zone (Fault)		CS/CZ	Seam or zone composed of disoriented usually angular fragments of the host rock substance with roughly parallel near-planar boundaries. The brecciated fragments may be of clay, silt, sand or gravel sizes or mixtures of these.							
Decomposed Seam/ Zone		DS/DZ	Seam of soil substance, often with gradational boundaries, formed by weathering of the r material in places.							
Infilled Seam	ı	IS	Seam of soil substance, usually clay or clayey, with very distinct roughly parallel bounda formed by soil migrating into joint or open cavity.							
Schistocity		SH	of platy or prism	natic mineral gra	ins, suc	h as r	nica.		e to the parallel arrangemen	
Vein		VN	Distinct sheet-like body of minerals crystallised within rock through typically open-space filli or crack-seal growth.							
ABBREVIAT	IONS A	ND DES	CRIPTIONS FO	R DEFECT SHA	PE ANI	D ROI	JGHNESS			
Shape	Abbr.	Descri	ption	Roughness	Abbr.	Desc	cription			
Planar	PI	Consis	stent orientation	Polished	Pol	Shin	y smooth su	rface		
Curved	Cu	Gradu orienta	al change in ation	Slickensided	SL	Groo	oved or striat	ed surfa	ace, usually polished	
Undulating	Un	Wavy	surface	Smooth	S			mooth to touch. Few or no surface irregula		
2										
Stepped	St	define	r more well d steps	Rough	RF	-1mi	m). Feels lik	e fine to	ularities (amplitude general coarse sandpaper	
Stepped Irregular	St Ir	define Many in orie	r more well d steps sharp changes ntation	Very Rough	VR	<1m Many >1m	m). Feels lik y large surfa m. Feels like	e fine to ce irreg very co	ularities (amplitude general	
Stepped Irregular		define Many in orie	r more well d steps sharp changes	Very Rough The dip (inclination	VR on from	<1mi Many >1mi horizo	m). Feels lik y large surfa m. Feels like ontal) of the c	e fine to ce irreg very co lefect.	ularities (amplitude general coarse sandpaper ularities, amplitude general parse sandpaper	
Stepped Irregular Orientation:	lr	define Many in orie Vertic Inclin	r more well d steps sharp changes ntation cal Boreholes –	Very Rough The dip (inclination The inclination is	VR on from s measu	<1mi Many >1mi horizo	m). Feels lik y large surfa m. Feels like ontal) of the c	e fine to ce irreg very co lefect. ingle to	ularities (amplitude general o coarse sandpaper ularities, amplitude general parse sandpaper the core axis.	
Stepped Irregular Orientation:	lr	define Many in orie Vertio Inclir	r more well d steps sharp changes ntation cal Boreholes – ned Boreholes – CRIPTIONS FOR	Very Rough The dip (inclination The inclination is	VR on from s measu	<1mi Many >1mi horizo	m). Feels lik y large surfa m. Feels like ontal) of the o s the acute a	e fine to ce irreg very co lefect. ingle to	ularities (amplitude general o coarse sandpaper ularities, amplitude general parse sandpaper the core axis.	
Stepped Irregular Orientation: ABBREVIATI	Ir ONS A Abbr.	define Many in orie Vertic Inclir ND DES Descrip	r more well d steps sharp changes ntation cal Boreholes – ned Boreholes – CRIPTIONS FOR	Very Rough The dip (inclination The inclination is R DEFECT COA	VR on from s measu	<1mi Many >1mi horizo	m). Feels lik y large surfa m. Feels like ontal) of the c s the acute a DEFECT A	e fine to ce irreg very co defect. ngle to PERTU	ularities (amplitude general coarse sandpaper ularities, amplitude general parse sandpaper the core axis. RE	
Stepped Irregular Orientation: ABBREVIATI	Ir ONS A Abbr. CN	define Many in orie Vertie Inclin ND DES Descrip No visib	r more well d steps sharp changes ntation cal Boreholes – ned Boreholes – CRIPTIONS FOR	Very Rough The dip (inclination The inclination is R DEFECT COA ing faces are discol	VR on from s measu TING	<1mi Many >1mi horizc ired as	m). Feels lik y large surfa m. Feels like ontal) of the c s the acute a DEFECT AF	e fine to ce irreg very co defect. ngle to PERTUR Abbr.	ularities (amplitude general coarse sandpaper ularities, amplitude general parse sandpaper the core axis. RE Description	

APPENDIX C ANALYTICAL RESULTS (EI, 2018A/B)

n Park

Table T1 - Summary of Soil Analytical F	Results	1																							E22142.E	06 - Croydon
						Heavy	Metals					P	AHs			вт	EX			TF	RH		Pesti	icides	PCBs	Asbestos
Sample ID	Material	Date	As	Cđ	Cr	Cu	РЬ	Hg	Ni	Zn	Carcinogenic PAHs (as B(α)P TEQ)	Benzo(a)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	OCPs	Opps	Total	Presence / absence
El Australia, 2018a		1			1					1												1				
BH1M_0.2-0.3 BH2_0.2-0.3	-		10 9	<0.3 <0.3	14 17	13 56	17 140	<0.05 0.07	1.5 18	15 2200	<0.3 3.2	<0.1 2.3	<0.8 23	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 120	<120 <120	<1	<1.7	<1	No
BH3_0.3-0.4 BH4M 0.2-0.3	_		4	<0.3 0.3	62 11	25 18	21 260	<0.05	57 5.9	340 140	0.9	0.6	6.9 2.2	0.1 <0.1	<0.1	<0.1	0.2 <0.1	1.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<1	<1.7	<1	Yes No
BH5_0.3-0.4			9	<0.3	22	23	67	0.05	16	87	1	0.6	5.6	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	94	<120	<1	<1.7	<1	No
BH6_0.2-0.3 BH7M_0.2-0.3	_	19/03/2018	10	<0.3	13 10	28	87 34	<0.05	5.1	69 31	0.3 <0.3	0.2 <0.1	1.3 <0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25 <25	<25 <25	<90 <90	<120 <120	<1	<1.7	<1	No No
BH8_0.3-0.4	_		8	<0.3	9.1	21	430	< 0.05	2.7	280	0.4	0.2	2.2	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH9_0.3-0.4 BH10M_0.3-0.4	-		7 25	<0.3 2.2	18	17 280	25 480	<0.05	16 8.4	120 850	<0.3 0.5	<0.1	<0.8 3.4	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90 760	<120	<1	<1.7	<1	No Yes
BH11_0.3-0.4	Fill		5	<0.3	12	79	6	< 0.05	73	62	<0.3	0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH12_0.5-0.6 BH13M_0.3-0.4	-		13	<0.3	4.9	20	16 24	<0.05	0.7	9.1 80	<0.3	<0.1	<0.8	<0.1 <0.1	<0.1	<0.1	<0.1	<0.3	<25 <25	<25 <25	<90 <90	<120 <120	<1	<1.7	<1	No No
BH13M_0.9-1.0			8	< 0.3	4.3	24	23	< 0.05	< 0.5	12	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH15_0.3-0.4 BH16_0.4-0.5	_		8	<0.3 <0.3	27	29 54	43 32	<0.05	23	130 64	<0.3 <0.3	<0.1 <0.1	<0.8	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<1	<1.7	<1	No
BH17_0.5-0.6 BH17_1.0-1.1	7	20/03/2018	6	<0.3	23 22	22 21	27 10	<0.05	20 19	51 33	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25 <25	<25 <25	<90 <90	<120	<1 NA	<1.7 NA	<1 NA	No NA
BH19_0.5-0.6	_		<3	<0.3	6.9	2.8	13	< 0.05	<0.5	13	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH20_0.4-0.5 BH21_0.4-0.5	_		3	<0.3 <0.3	6.5 7.5	1.9 4.5	16 18	<0.05	1.9 1.4	31 19	<0.3	<0.1 <0.1	<0.8 <0.8	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<1	<1.7	<1	No No
BH1M_0.8-0.9	1	1	4	<0.3	5.6	22	10	<0.05	1.3	13	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	<1	NA
BH7M_1.4-1.5 BH10M_0.9-1.0		19/03/2018	8	<0.3	4.4 6.3	17 26	11	<0.05	0.7 <0.5	15 5	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25 <25	<25 <25	<90 <90	<120 <120	NA NA	NA NA	NA NA	NA NA
BH13M_5.5-5.6	Natural		6	<0.3	10	53	24	<0.05	26	120	<0.3	<0.1	3.8	0.5	<0.1	0.2	0.1	1.2	36	59	<90	<120	NA	NA	NA	NA
BH14_0.4-0.5 BH17_11.6	-	20/03/2018	6	<0.3	17 5.8	25	18	<0.05	7.1	23 8.1	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25 <25	<25 <25	<90 <90	<120 <120	<1 NA	<1.7 NA	<1 NA	No NA
BH18_0.5-0.6			5	<0.3	5.8	23	12	<0.05	1.3	22	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
El Australia, 2018b BH101M_0.4-0.5	1	1	7	< 0.3	4.6	19	11	< 0.05	1.3	14	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH102_0.2-0.3	_		<1	<0.3	1.2	<0.5	2	< 0.05	< 0.5	2.8 14	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90 <90	<120	<1	<1.7	<1	No No
BH103_0.2-0.3 BH104_0.2-0.3			2	<0.3	2.5 2.6	3.3	12	<0.05	1.9 1.6	6	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH104_0.7-0.8 BH105_0.3-0.4	_		7 22	<0.3 0.8	14 8.3	15 150	19 350	<0.05 0.13	4	23 270	<0.3	<0.1	<0.8	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.3	<25 <25	<25 <25	<90 <90	<120 <120	<1	<1.7	<1	No No
BH106_0.3-0.4	Fill		7	< 0.3	7.5	15	36	< 0.05	2.7	47	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH107_0.2-0.3 BH108M_0.4-0.5	-		2	<0.3 0.4	14 17	63 59	150 250	<0.05 0.06	25 13	150 210	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25 <25	<25 130	<90 160	<120 <120	<1	<1.7	<1	No No
BH109_0.1-0.2 BH110_0.1-0.2	_	22/8/2018	10	<0.3	5.3 4.9	6	2	<0.05	1.1	4.3 2.9	<0.3	<0.1	<0.8	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.3	<25 <25	<25 <25	<90 <90	<120 <120	<1	<1.7	<1	No No
BH111_0.4-0.5	_		5	<0.3	14	16	19	<0.05	3.7	24	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH112M_0.3-0.4 BH113_0.2-0.3	-		7	< 0.3	4.7	30	44 37	<0.05	1.8	51 31	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90 <90	<120	<1	<1.7	<1	No
BH101M_0.6-0.7	_		6	< 0.3	4.8	26	12	< 0.05	5.1	36	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N/A N/A	N/A N/A	N/A N/A	N/A N/A
BH105_0.8-0.9 BH106_0.8-0.9	Natural		5	<0.3 <0.3	6.3 8.3	17 26	11 13	<0.05 <0.05	1.1 2.5	15 22	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	N/A	N/A	N/A	N/A
BH108M_0.9-1.0 BH111_0.8-0.9	_		6	<0.3	10	31	23	< 0.05	1.6	20	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N/A N/A	N/A N/A	N/A N/A	N/A N/A
BH114_0.4-0.5			4	<0.3	7	24	12	<0.05	0.6	12	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N/A	N/A	N/A	N/A
	Concentration		25	2.2	62	280	480	0.13	73	2200	Analysis 3.2	2.3	23	0.5	<0.1	0.2	0.2	1.3	36	130	760	<120	<1	<1.7	<1	Yes
95	5% UCL		NC	NC	NC	71.5	NC	NC	15.64	107.5 SI		NC	NC	NC	NC	NC	NC	NC	NC	33.07	NC	NC	NC	NC	NC	NC
HL A-	Residential		100	20	100	6,000	6,000	40	400	7,400	3		300										240		1	
					Cr(VI) 500																					
HIL B -	Residential		500	150	Cr (VI)	30,000	1,200	120	1,200	60,000	4		400										600		1	
HIL C - Recrea	ational Open Space		300	9	300 Cr (VI)	17,000	600	80	1,200	30,000	3		300										400		1	
HIL D - Com	nmercial Industrial		3,000	900	3,600 Cr (VI)	240,000	1,500	730	6,000	600,000	40		300										3600		7	
				1	0. (41)	1		pths (0 m to		1	1		4	5	0.7	480	NL	110	50	280				L.	1	
HSL A & F	B - Residential							pths (1 m to pths (2 m to	/					NL NL	1 2	NL NL	NL NL	310 NL	90 150	NL NL						
			-					pths (0 m to						NL	3	NL	NL	NL	290	NL	1					
HSLC Boom	ational Open Space		E				Source de	pths (1 m to	<2 m BGL)					NL NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL						
Hot C - Reche					-	-		pths (2 m to irce depths (4		-	-	-	-	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL						
							Source de	pths (0 m to	<1 m BGL)					NL	4	NL	NL	NL	310	NL						
HSL D - Con	nmercial Industrial							pths (1 m to pths (2 m to						NL NL	6 9	NL NL	NL NL	NL NL	180 NL	NL NL						
					2	1		irce depths (4					000000000000000000000000000000000000000	NL	20	NL	NL	NL	NL	NL						
	.s / ESLs		100		205	90	1,260		35	190		33 *		170	50	85	70	105	180	120	300	2,800	180			
Management Limits – Resident	tial, parkland and public open sp ined soil texture ¹	pace																	700	1,000	3,500	10,000				
Asbestos contaminal	ation HSL – A Residential																						L			0.01
	ACM (%w/w) ation HSL – B Residential																									
Bonded	ACM (%w/w)																									0.04
Asbestos contaminati Bonded	tion HSL – C Recreational ACM (%w/w)																									0.02
Asbestos contamination F	HSL – D Commercial Industrial ACM (%w/w)																									0.05
		(9) wheel																								0.001
Asbestos contamination HSL for N		(200) 10 [0.001

Notes:

HIL A HIL B HIL C HIL D HSL A & B HSL C HSL D NA NC ND NC ND NC NC ND NC S F1 F2 F3 F4 F4

All results are recorded in mg/kg (unless otherwise stated)

Highlighted values indicate concentration exceeds Human Helath Based Sol Criteria Highlighted values indicates concentration exceeds Ecological Based Sol Criteria Highlighted indicates NEPM 2013 criteria exceeded

Highlighted indicates NEPM 2013 of their a exceeded
NEPC 1999 Annothene 2013 HL A⁻ Health based Residential alth gates in accessible soil, also includes childrer's day care centes, preschedu and pinney schedus.
NEPC 1999 Annothene 2013 HL A⁻ Health based Residential alth gates in accessible soil, also includes childrer's day care centes, preschedu and pinney schedus.
NEPC 1999 Annothene 2013 HL A⁻ Health based Residential alth gates in accessible soil, also includes childrer's day care centes, preschedu and pinney schedus.
NEPC 1999 Annothene 2013 HL A⁻ Health based pacies groups each a pack, plagnade, plagnade, schedu schedung, witchedu and bagelus.
NEPC 1999 Annothene 2013 HL A⁻ Health Based pacies groups each a pack, plagnade, plagnade, schedu schedung.
NEPC 1999 Annothene 2013 HL A⁻ Health Based pacies groups each a pack, plagnade, plagnade, plagnade, schedu schedung.
NEPC 1999 Annothene 2013 HL A⁻ Health Based pacies groups each a pack, plagnade, plagna

Table T2 – Summary of Groundwat	ter Investigation Results	6																					E22142.E06	- Croydon I	Park
					-	Heavy	Metals					PAHs	•		-	BTEX				TF	Hs		Other	VO	OCs
Sample Identifica	ation	Date	As	Cd	Cr	Cu	РЬ	Hg	Ni	Zn	Total PAHs	Benzo(α)pyrene	Naphthalene	Benzene	Toluene	Ethylbenzene	o-xylene	m/p-xylene	F1	F2	F3	F4	Phenols (Total)	Total VOC	Acetone (2-propanone)
El Australia (2018a)			1	1				1																	
BH1M-1			<1	1	2	32	2	<0.1	120	600	<1	<0.1	<0.1	< 0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<10	<10	<10
BH4M-1			<1	<0.1	1	60	4	<0.1	73	280	<1	<0.1	<0.1	< 0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<10	<10	<10
BH7M-1		43200	<1	0.6	3	53	4	<0.1	170	900	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<10	<10	<10
BH10M-1			<1	0.9	2	54	4	<0.1	67	290	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<10	<10	<10
BH13M-1			1	<0.1	1	25	2	<0.1	47	84	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<10	28	24
El Australia (2018b)														•											
BH101M-1			14	0.4	2	64	4	<0.1	35	200	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<10	17	13
BH108M-1		43341	20	0.9	2	63	4	<0.1	89	300	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<10	19	12
BH112M-1			3	0.7	1	59	3	<0.1	47	210	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<10	<10	<10
					-	-	-			Statistic	al Analysis				-	-					-				
Maxim	um Concentration		20	1	3	64	4	<0.1	170	900	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<10	28	24
			-							(GILs		1		-	-	1	1	1						
								o < 4m					NL	5,000	NL	NL	NL	NL	NL	NL					
HSL A & B - Low	to High Density Reside	ntial						o <8 m					NL	5,000	NL	NL	NL	NL	NL	NL					
								m +					NL	5,000	NL	NL	NL	NL	NL	NL					
								o < 4m					NL	NL	NL	NL	NL	NL	NL	NL					
HSL C - Rec	creational Open Space							o <8 m					NL	NL	NL	NL	NL	NL	NL	NL					
								m +					NL	NL	NL	NL	NL	NL	NL	NL					
								o < 4m					NL	30,000	NL	NL	NL	NL	NL	NL					
HSL D - Co	ommercial Industrial							o <8 m					NL	30,000	NL	NL	NL	NL	NL	NL					
Г							8	m +		1			NL	35,000	NL	NL	NL	NL	NL	NL					
ANZG (2018)	Fresh W	later ⁴	24 (AsIII) ⁴ 13 (AsV)	0.2 ⁴	3.3 (CrIII) ⁴ 0.4 (Cr VI)	1.4 ⁴	3.4 ⁴	0.6 ⁴	11⁴	8⁴			16 ⁴	950 ⁴	180 ^{8,4}	80 ⁹	350 ^{8,4}	275 ^{8,4}	50 ⁷	60 ⁷	500 ⁷	500 ⁷	320 ⁴		
	Marine V	Vater 4		5.5	27.4 (CrIII) ⁴ 4.4 (Cr VI)	1.3 ⁴	4.4 ⁴	0.4 4	70 ⁴	15 ^{2,4}			70 ⁴	700 4	180 ⁹	5⁴	350 ⁹	275 ⁹			000	000	400 4		
NHMRC (2017)	Recreationa	l Water 5,6	100	20	50	1000 *	100	10	200	3000		0.01		10	25 *	3*	20 *	20 *					2		

Notes:

All values are µg/L unless stated otherwise

NL = Not Limiting

NA = 'Not Analysed' i.e. the sample was not analysed.

NR = No currently recommended criteria

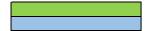
ND = Not Detected - i.e. concentration below the laboratory PQL

- F1 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
- F2 To obtain F2 subtract naphthalene from the >C10-C16 fraction.
- (>C16-C34) F3
- F4 (>C34-C40)

2 = Figure may not protect key species from chronic toxicity, refer to ANZAST (2018) for further guidance.

3 = Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZAST (2018) for further guidance.

4 = NEPM (2013) Groundwater Investigation Levels for fresh and marine water quality, based on ANZG(2018).


5 = Based on NHMRC (2017) Drinking Water Guidelines. The lowest of the Health Guideline x10 or the Aesthetic Guideline has been chosen as the assessment criteria. Aesthetic based criteria have been indicated by *.

6 = Where no NHMRC (2017) Recreational Water Criteria provided, ANZAST (2018) Recreational Criteria have been utilised.

7 = In lack of a criteria the laboratory PQL has been used (DEC, 2007).

8 = Low and moderate reliability toxicity data, refer to ANZG (2018).

9 = Unknown reliability of species protection, refer to ANZG (2018).

Highlighted indicates ecological criteria exceeded Highlighted indicates criteria exceeded

	А	В	С	D	E	F	G	Н	I	J	К	L	М
1				General Sta	tistics on U	ncensored F	ull Data	•					
2	Date/	Time of Co	mputation	15/07/2020	5:10:13 PM								
3	ι	Jser Selec	ted Options										
4			From File	WorkSheet.	xls								
5		Full	Precision	OFF									
6													
7	From File: Wo	orkSheet.x	ls										
8													
9					General S	statistics for	Uncensored	Data Sets					
10													
11	Variat	ole	NumObs	# Missing	Minimum	Maximum	Mean	SD	SEM	MAD/0.675	Skewness	Kurtosis	CV
12		c.PAH	35	0	0.3	3.2	0.429	0.507	0.0857	0	5.157	28.2	1.182
13		Copper	35	0	0.5	280	33.6	51.44	8.695	8.895	3.76	16.18	1.531
14		Nickel	35	0	0.5	73	10.43	15.64	2.643	4.448	2.774	8.599	1.499
15		Zinc	33	0	2.8	340	73.82	87.53	15.24	40.03	1.747	2.435	1.186
16		TRH F2	35	0	25	130	28	17.75	3	0	5.916	35	0.634
17													
18					Percer	ntiles for Uno	censored Da	ta Sets					
19						1	1			1			
20	Variat		NumObs	# Missing	10%ile	20%ile		50%ile(Q2)	. ,		90%ile	95%ile	99%ile
21		c.PAH	35	0	0.3	0.3	0.3	0.3	0.3	0.3	0.46	0.93	2.452
22		Copper	35	0	3	11.6	13	19	28.5	34.8	61.4	100.3	235.8
23		Nickel	35	0	0.64	1.38	1.55	3.7	15	16.4	21.8	34.6	67.56
24		Zinc	33	0	6.62	13.4	14	33	87	126	198	274	320.8
25		TRH F2	35	0	25	25	25	25	25	25	25	25	94.3

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Unc	ensored Full Data Sets	
2					
3	User Selected Options				
4	Date/Time of Computation	15/07/2020 5:10:21 PM			
5	From File	WorkSheet.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	c.PAH				
11					
12			General	Statistics	
13	Total	Number of Observations	35	Number of Distinct Observations	6
14				Number of Missing Observations	0
15		Minimum	0.3	Mean	0.429
16		Maximum	3.2	Median	0.3
17 18		SD	0.507	Std. Error of Mean	0.0857
18 19		Coefficient of Variation	1.182	Skewness	5.157
20				I	
20			Normal (GOF Test	
22	S	hapiro Wilk Test Statistic	0.291	Shapiro Wilk GOF Test	
23	5% S	hapiro Wilk Critical Value	0.934	Data Not Normal at 5% Significance Level	
24		Lilliefors Test Statistic	0.457	Lilliefors GOF Test	
25	5	% Lilliefors Critical Value	0.15	Data Not Normal at 5% Significance Level	
26		Data Not	Normal at 5	% Significance Level	
27					
28			suming Nor	mal Distribution	
29	95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	
30		95% Student's-t UCL	0.573	95% Adjusted-CLT UCL (Chen-1995)	0.649
31				95% Modified-t UCL (Johnson-1978)	0.586
32					
33					
34		A-D Test Statistic	9.944	Anderson-Darling Gamma GOF Test	1
35		5% A-D Critical Value	0.756	Data Not Gamma Distributed at 5% Significance Leve Kolmogrov-Smirnoff Gamma GOF Test	
36		K-S Test Statistic 5% K-S Critical Value	0.469	Data Not Gamma Distributed at 5% Significance Leve	<u></u>
37				ed at 5% Significance Level	
38					
39			Gamma	Statistics	
40		k hat (MLE)	2.649	k star (bias corrected MLE)	2.441
41		Theta hat (MLE)	0.162	Theta star (bias corrected MLE)	0.176
42		nu hat (MLE)	185.5	nu star (bias corrected)	170.9
43	M	LE Mean (bias corrected)	0.429	MLE Sd (bias corrected)	0.274
44 45		, , ,		Approximate Chi Square Value (0.05)	141.7
45 46	Adjus	sted Level of Significance	0.0425	Adjusted Chi Square Value	140.4
40 47				<u> </u>	
47		Ass	uming Gam	nma Distribution	
49	95% Approximate Gamma	a UCL (use when n>=50))	0.517	95% Adjusted Gamma UCL (use when n<50)	0.522
50				I I	
51			Lognorma	I GOF Test	
52	S	Shapiro Wilk Test Statistic	0.391	Shapiro Wilk Lognormal GOF Test	
				+	
53	5% S	hapiro Wilk Critical Value	0.934	Data Not Lognormal at 5% Significance Level	

<u> </u>	A B C D E	F	G H I J K	L
55	5% Lilliefors Critical Value	0.15	Data Not Lognormal at 5% Significance Level	
56	Data Not L	ognormal at	5% Significance Level	
57				
58		Lognorma	I Statistics	
59	Minimum of Logged Data	-1.204	Mean of logged Data	-1.048
60	Maximum of Logged Data	1.163	SD of logged Data	0.477
61				
62	Assu	iming Logno	ormal Distribution	
63	95% H-UCL	0.46	90% Chebyshev (MVUE) UCL	0.49
64	95% Chebyshev (MVUE) UCL	0.535	97.5% Chebyshev (MVUE) UCL	0.597
65	99% Chebyshev (MVUE) UCL	0.719		
66				
67			tion Free UCL Statistics	
68	Data do not fe	ollow a Disc	ernible Distribution (0.05)	
69				
70	-		tribution Free UCLs	
71	95% CLT UCL	0.569	95% Jackknife UCL	0.573
72	95% Standard Bootstrap UCL	0.565	95% Bootstrap-t UCL	0.93
73	95% Hall's Bootstrap UCL	1.001	95% Percentile Bootstrap UCL	0.586
74	95% BCA Bootstrap UCL	0.757		
75	90% Chebyshev(Mean, Sd) UCL	0.686	95% Chebyshev(Mean, Sd) UCL	0.802
76	97.5% Chebyshev(Mean, Sd) UCL	0.964	99% Chebyshev(Mean, Sd) UCL	1.281
77				
78			UCL to Use	
79	95% Student's-t UCL	0.573	or 95% Modified-t UCL	0.586
80				
υU				
80 81			ovided to help the user to select the most appropriate 95% UCL.	
	These recommendations are based upon the res	ults of the si	mulation studies summarized in Singh, Singh, and Iaci (2002)	
81	These recommendations are based upon the res and Singh and Singh (2003). Howev	ults of the si er, simulatio	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets.	
81 82	These recommendations are based upon the res and Singh and Singh (2003). Howev	ults of the si er, simulatio	mulation studies summarized in Singh, Singh, and Iaci (2002)	
81 82 83	These recommendations are based upon the res and Singh and Singh (2003). Howev	ults of the si er, simulatio	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets.	
81 82 83 84	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insigh	ults of the si er, simulatio	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets.	
81 82 83 84 85	These recommendations are based upon the res and Singh and Singh (2003). Howev	ults of the si er, simulatio	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets.	
81 82 83 84 85 86	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insigh	ults of the si er, simulatic nt the user m	mulation studies summarized in Singh, Singh, and Iaci (2002) Ins results will not cover all Real World data sets. Thay want to consult a statistician.	
81 82 83 84 85 86 87	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper	ults of the si er, simulatic nt the user m General	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician.	
81 82 83 84 85 86 87 88	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insigh	ults of the si er, simulatic nt the user m	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. nay want to consult a statistician. Statistics Number of Distinct Observations	29
81 82 83 84 85 86 87 88 88 89	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper Total Number of Observations	ults of the si er, simulatic nt the user m General 35	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations	0
81 82 83 84 85 86 87 88 89 90	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper Total Number of Observations Minimum	General 35 0.5	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. nay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean	0 33.6
81 82 83 84 85 86 87 88 89 90 91	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper Total Number of Observations Minimum Maximum	General 35 0.5 280	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median	0 33.6 19
81 82 83 84 85 86 87 88 89 90 91 92 92 93 94	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper Total Number of Observations Minimum Maximum SD	General 35 0.5 280 51.44	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	0 33.6 19 8.695
81 82 83 84 85 86 87 88 89 90 91 92 93 92 93 94 95	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper Total Number of Observations Minimum Maximum	General 35 0.5 280	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median	0 33.6 19
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper Total Number of Observations Minimum Maximum SD	ults of the si er, simulation at the user m General 35 0.5 280 51.44 1.531	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 33.6 19 8.695
81 82 83 84 85 86 87 88 89 90 91 92 92 92 92 92 94 95 97	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insigh Copper Total Number of Observations Minimum Maximum SD Coefficient of Variation	General 35 0.5 280 51.44 1.531	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test	0 33.6 19 8.695
81 82 83 84 85 86 87 88 89 90 91 92 93 91 92 93 94 95 95 96 97 98	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic	General 35 0.5 280 51.44 1.531 Normal (0.551	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Shapiro Wilk GOF Test	0 33.6 19 8.695
81 82 83 84 85 86 87 88 89 90 91 92 93 92 93 94 95 94 95 96 97 98 99	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insigt Copper Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	ults of the si er, simulatic nt the user m General 35 0.5 280 51.44 1.531 Normal (0.551 0.934	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Stewness GOF Test Data Not Normal at 5% Significance Level	0 33.6 19 8.695
81 82 83 84 85 86 87 88 89 90 91 92 93 91 92 93 94 95 95 96 97 98 99 100	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	ults of the si er, simulatic nt the user m General 35 0.5 280 51.44 1.531 Normal (0.551 0.934 0.328	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Correst Data Not Normal at 5% Significance Level Lilliefors GOF Test	0 33.6 19 8.695
81 82 83 84 85 86 87 88 89 90 91 92 93 94 92 93 94 95 96 97 98 99 91 100	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper Total Number of Observations Minimum Maximum SD Coefficient of Variation SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	ults of the si er, simulation int the user m General 35 0.5 280 51.44 1.531 0.551 0.551 0.934 0.328 0.15	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Median Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level	0 33.6 19 8.695
81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 91 100 101 102	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper Total Number of Observations Minimum Maximum SD Coefficient of Variation SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	ults of the si er, simulation int the user m General 35 0.5 280 51.44 1.531 0.551 0.551 0.934 0.328 0.15	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Correst Data Not Normal at 5% Significance Level Lilliefors GOF Test	0 33.6 19 8.695
81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 100 101 102 103	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper Total Number of Observations Minimum Maximum SD Coefficient of Variation SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not	ults of the si er, simulation at the user m General 35 0.5 280 51.44 1.531 0.551 0.551 0.934 0.328 0.15 Normal at 5	mulation studies summarized in Singh, Singh, and laci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level % Significance Level	0 33.6 19 8.695
81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 91 100 101 102 103	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper Total Number of Observations Minimum Maximum SD Coefficient of Variation SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not	ults of the si er, simulation at the user m General 35 0.5 280 51.44 1.531 0.551 0.551 0.934 0.328 0.15 Normal at 5	Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Mean Std. Error of	0 33.6 19 8.695
81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper Total Number of Observations Minimum Maximum SD Coefficient of Variation Sbapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not As: 95% Normal UCL	ults of the si er, simulatic ier, simulatic nt the user m General 35 0.5 280 51.44 1.531 Normal (0.551) 0.934 0.328 0.15 Normal at 5 suming Normal	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Stewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Sw Significance Level Sy Sy UCLs (Adjusted for Skewness)	0 33.6 19 8.695 3.76
81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 90 100 101 102 103 104	These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insign Copper Total Number of Observations Minimum Maximum SD Coefficient of Variation SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not	ults of the si er, simulation at the user m General 35 0.5 280 51.44 1.531 0.551 0.551 0.934 0.328 0.15 Normal at 5	Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Mean Std. Error of	0 33.6 19 8.695

A	B C D E	F Gamma GO	G H I J K F Test	L
109	A-D Test Statistic	1.179	Anderson-Darling Gamma GOF Test	
110	5% A-D Critical Value	0.783	Data Not Gamma Distributed at 5% Significance Leve	əl
111	K-S Test Statistic	0.194	Kolmogrov-Smirnoff Gamma GOF Test	-
112	5% K-S Critical Value	0.154	Data Not Gamma Distributed at 5% Significance Leve	əl
113	Data Not Gamm	a Distributed a	at 5% Significance Level	-
114 115			•	
116		Gamma Sta	tistics	
117	k hat (MLE)	0.844	k star (bias corrected MLE)	0.791
118	Theta hat (MLE)	39.8	Theta star (bias corrected MLE)	42.48
119	nu hat (MLE)	59.09	nu star (bias corrected)	55.36
120	MLE Mean (bias corrected)	33.6	MLE Sd (bias corrected)	37.78
121			Approximate Chi Square Value (0.05)	39.26
122	Adjusted Level of Significance	0.0425	Adjusted Chi Square Value	38.62
122				
123	Ass	uming Gamma	Distribution	
125	95% Approximate Gamma UCL (use when n>=50))	47.37	95% Adjusted Gamma UCL (use when n<50)	48.16
126		Lognormal G	DF Test	
127	Shapiro Wilk Test Statistic	0.934	Shapiro Wilk Lognormal GOF Test	
128	5% Shapiro Wilk Critical Value	0.934	Data Not Lognormal at 5% Significance Level	
129	Lilliefors Test Statistic	0.223	Lilliefors Lognormal GOF Test	
130	5% Lilliefors Critical Value	0.15	Data Not Lognormal at 5% Significance Level	
131		anormal at 5%	o Significance Level	
132				
133		Lognormal St	atistics	
134	Minimum of Logged Data	-0.693	Mean of logged Data	2.816
135	Maximum of Logged Data	5.635	SD of logged Data	1.298
136				
137	Assu	ming Lognorm	al Distribution	
138	95% H-UCL	73.18	90% Chebyshev (MVUE) UCL	67.51
139	95% Chebyshev (MVUE) UCL	81.22	97.5% Chebyshev (MVUE) UCL	100.3
140	99% Chebyshev (MVUE) UCL	137.6	, , ,	
141				
142	Nonparamet	ric Distributior	Free UCL Statistics	
143			ible Distribution (0.05)	
144			· · · ·	
145	Nonpara	ametric Distrib	ution Free UCLs	
146 147	95% CLT UCL	47.9	95% Jackknife UCL	48.3
	95% Standard Bootstrap UCL	47.81	95% Bootstrap-t UCL	68.41
148	95% Hall's Bootstrap UCL	111.4	95% Percentile Bootstrap UCL	49.09
149	95% BCA Bootstrap UCL	56.24	с	
150	90% Chebyshev(Mean, Sd) UCL	59.68	95% Chebyshev(Mean, Sd) UCL	71.5
151	97.5% Chebyshev(Mean, Sd) UCL	87.9	99% Chebyshev(Mean, Sd) UCL	120.1
152			,	
153		Suggested UC	L to Use	
154	95% Chebyshev (Mean, Sd) UCL	71.5		
155	, , , , , , , , , , , , , , , , , , , ,			
156	Note: Suggestions regarding the selection of a 95%	UCL are provid	led to help the user to select the most appropriate 95% UCL.	
157			ation studies summarized in Singh, Singh, and Iaci (2002)	
158			results will not cover all Real World data sets.	
159			want to consult a statistician.	
159 160 161			want to consult a statistician.	

⊢	A B C D E	F	G H I J K	L
163	Nickel			
164		General	Statistics	
165	Total Number of Observations	35	Number of Distinct Observations	28
166			Number of Missing Observations	0
167	Minimum	0.5	Mean	10.43
168	Maximum	73	Median	3.7
169	SD	15.64	Std. Error of Mean	2.643
170 171	Coefficient of Variation	1.499	Skewness	2.774
172				
172		Normal G	OF Test	
174	Shapiro Wilk Test Statistic	0.642	Shapiro Wilk GOF Test	
175	5% Shapiro Wilk Critical Value	0.934	Data Not Normal at 5% Significance Level	
176	Lilliefors Test Statistic	0.263	Lilliefors GOF Test	
177	5% Lilliefors Critical Value	0.15	Data Not Normal at 5% Significance Level	
178	Data Not	Normal at 5	% Significance Level	
179				
180	Ass	suming Norn	nal Distribution	
181	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
182	95% Student's-t UCL	14.9	95% Adjusted-CLT UCL (Chen-1995)	16.1
183			95% Modified-t UCL (Johnson-1978)	15.11
184				
185		Gamma (
186	A-D Test Statistic	1.077	Anderson-Darling Gamma GOF Test	
187	5% A-D Critical Value	0.795	Data Not Gamma Distributed at 5% Significance Leve	
188	K-S Test Statistic	0.145	Kolmogrov-Smirnoff Gamma GOF Test	
189	5% K-S Critical Value	0.155	Detected data appear Gamma Distributed at 5% Significance	e Level
190	Detected data follow App	or. Gamma I	Distribution at 5% Significance Level	
191				
192		Gamma		
193	k hat (MLE)	0.678	k star (bias corrected MLE)	0.639
194	Theta hat (MLE)	15.38	Theta star (bias corrected MLE)	16.32
195	nu hat (MLE)	47.47	nu star (bias corrected)	44.74
196	MLE Mean (bias corrected)	10.43	MLE Sd (bias corrected)	13.05
197	Adverte di Level et O'sufficience	0.0405	Approximate Chi Square Value (0.05)	30.4
198	Adjusted Level of Significance	0.0425	Adjusted Chi Square Value	29.84
199	Acc.	umina Com	ma Distribution	
200	95% Approximate Gamma UCL (use when n>=50)	15.35	95% Adjusted Gamma UCL (use when n<50)	15.64
201	55% Approximate Gamma OCL (use when 112-50)	15.55		15.04
202		Lognormal	COE Test	
203	Shapiro Wilk Test Statistic	0.947	Shapiro Wilk Lognormal GOF Test	
204	5% Shapiro Wilk Critical Value	0.934	Data appear Lognormal at 5% Significance Level	
205	Lilliefors Test Statistic	0.13	Lilliefors Lognormal GOF Test	
206	5% Lilliefors Critical Value	0.15	Data appear Lognormal at 5% Significance Level	
207			at 5% Significance Level	
208				
209		Lognorma	Statistics	
210	Minimum of Logged Data	-0.693	Mean of logged Data	1.45
211	Maximum of Logged Data	4.29	SD of logged Data	1.4
212		0		
			ma al Diatella dia a	
213		mina Loano	rmal Distribution	
213 214 215	Assu 95% H-UCL	23.26	rmal Distribution 90% Chebyshev (MVUE) UCL	20.42

	Α	В		С		D		E		F	<u> </u>	G	-	Н				-	J		—	К	-	
217	A	D		-)% Che		ev (M)	/UE) U	CL	г 42.75		G		<u> </u>		-			J		1	ĸ		L
								,																
218 219							N	lonpara	amet	tric Distrib	ution I	Free U	JCL	Statis	tics									
219					Da	ta app	bear t	o follow	vaD	iscernible	Distr	butior	n at !	5% Si	gnific	ance	Leve	əl						
220																								
222								Non	para	ametric Dis	stribut	ion Fr	ee l	JCLs										
222							95%	CLT U	CL	14.78									95%	% Ja	ackkr	nife UC	L	14.9
223				9	5% Sta	indard	Boot	strap U	CL	14.82									95%	Boo	otstra	ap-t UC	L	17.79
225					95%	Hall's	Boot	strap U	CL	37.48							95%	Per	centil	e Bc	ootst	rap UC	L	15.08
225								strap U		16.29												•		
				90%	Cheby	/shev(l	Mean	, Sd) U	CL	18.36						95	% C	heb	yshev	/(Me	an, (Sd) UC	L	21.95
227						•		, Sd) U		26.94									·	•		, Sd) UC		36.73
228					,			. ,											,	·		,		
229									:	Suggested	UCL	to Us	e											
230					95% A	djuste	ed Ga	mma U		15.64														
231						,															1			
232		Note: Suc	aaestic	ons rec	ardina	the se	electio	on of a S	95%	UCL are p	rovide	d to h	elp t	he us	er to :	select	the r	mos	t appr	ropri	iate (95% U(CL.	
233					-					ults of the s			•							•				
234										er, simulati							-		-			(,	,	
235					5	-				t the user r														
236									- 3.								-							
237																								
238	Zinc																							
239																								
240										General	l Stati	stics												
241				Т	otal Nu	mber o	of Oh	servatio	ons	33		5000				Nı	imbe	er of	Distir	nct (Ohse	ervation	IS	29
242									,													ervation		0
243								Minim	um	2.8									1011331	<u> </u>		Mea		73.82
244								Maxim	-	340												Media		33
245									SD	87.53									St	td F	rror	of Mea		15.24
246					0	oeffici	ient o	f Variati		1.186												cewnes		1.747
247						Joemer		variat		1.100												(emice		1.747
248										Normal	GOF	Test												
249					Shar	niro Wi	lk To	st Statis	stic	0.76		1000				Shapi	ro W	/ilk (GOF 1	Teet	+			
250				59				ical Val		0.931				Dat		Norm						مريما		
251					-			st Statis		0.219				Dat					OF Te					
252								ical Val		0.154				Dat	a Not	Norm					nce l	مريما		
253					0701		3 011			Normal at	5% \$	anific	ance			Norm		0 /0	oigin					
254								Data			570 0	grinica	ance		51									
255									Acc	uming No	rmal [Nietribu	ution	<u> </u>										
256				Q5%	Norm	al LICI			~33			nou iDi	auol		95%	JCLs	(Adi	liete	d for	Ske	wne	ee)		
257				3370				nt's-t U	CL	99.63												en-1998	5)	103.8
258						JJ /0 C	June	11.3-1.0		53.05							•				•	on-1978		103.8
259																JU /U IV	Juli	icu-				13/0	~/	100.4
260										Gamma	605	Tert												
261						٨		st Statis	stic	0.416		1031		•	nder	on-Da	arling	- C	mmo	60		aet		
262								ical Val		0.416	-	Jotoot	<u>- 7</u>					-					anor	Level
263								st Statis		0.785			eu u		•	ov-Sr						-	unce	
264								ical Val		0.12	-)etert	<u>64</u> 4		-								anco	e Level
265										Gamma D								/13(1	innieg	- at C	J /0 C	igninca	ance	
266						Derec	ieu û	αια αμρ	edi		าอนเมเ	neu al	. J 70	Jigh	mcan	CG LG	v CI							
267										0	Che+	Her												
268							1.	hot /M		Gamma	Jati	SUCS						64 -	r /h.:-				-\	0 700
269								hat (ML		0.839														0.783
						I	neta	hat (ML	_E)	88.02						1	neta	sta	r (blas	s cor	recte	ed MLE	=)	94.33

~- · ·	A B C D E	F	G H I J K	L
271	nu hat (MLE)	55.35	nu star (bias corrected)	51.65
272	MLE Mean (bias corrected)	73.82	MLE Sd (bias corrected)	83.45
273			Approximate Chi Square Value (0.05)	36.15
274	Adjusted Level of Significance	0.0419	Adjusted Chi Square Value	35.48
275				
276	Ass	suming Garr	nma Distribution	
277	95% Approximate Gamma UCL (use when n>=50)	105.5	95% Adjusted Gamma UCL (use when n<50)	107.5
278		Lognormo	I GOF Test	
279	Shapiro Wilk Test Statistic	0.97		
280		0.97	Shapiro Wilk Lognormal GOF Test	
281	5% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test	
282		0.0618		
283	5% Lilliefors Critical Value		Data appear Lognormal at 5% Significance Level	
284	Data appear	Lognormai	at 5% Significance Level	
285		Lognorma	al Statistics	
286	Minimum of Logged Date	-		2 509
287	Minimum of Logged Data	1.03	Mean of logged Data	3.598
288	Maximum of Logged Data	5.829	SD of logged Data	1.303
289				
290				
291	95% H-UCL	163.7	90% Chebyshev (MVUE) UCL	149.9
292	95% Chebyshev (MVUE) UCL	180.9	97.5% Chebyshev (MVUE) UCL	223.8
293	99% Chebyshev (MVUE) UCL	308.1		
294				
295	-		tion Free UCL Statistics	
296	Data appear to follow a I	Discernible	Distribution at 5% Significance Level	
297				
297 298			tribution Free UCLs	
	95% CLT UCL	98.88	95% Jackknife UCL	99.63
298 299	95% CLT UCL 95% Standard Bootstrap UCL	98.88 98.02	95% Jackknife UCL 95% Bootstrap-t UCL	109.8
298 299 300	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	98.88 98.02 103.5	95% Jackknife UCL	
298 299 300 301	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL	98.88 98.02 103.5 105.8	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	109.8 100.5
298 299 300 301 302	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	98.88 98.02 103.5 105.8 119.5	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	109.8 100.5 140.2
298 299 300 301 302	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL	98.88 98.02 103.5 105.8	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	109.8 100.5
298 299 300 301 302 303	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	98.88 98.02 103.5 105.8 119.5 169	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	109.8 100.5 140.2
298 299 300 301 302 303 304	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	98.88 98.02 103.5 105.8 119.5 169 Suggested	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	109.8 100.5 140.2
298 299 300 301 302 303 304 305 306	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	98.88 98.02 103.5 105.8 119.5 169	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	109.8 100.5 140.2
298 299 300 301 302 303 304 305 306 307	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Adjusted Gamma UCL	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Adjusted Gamma UCL	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308 309	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Adjusted Gamma UCL	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308 309 310	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL 95% Adjusted Gamma UCL Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howey	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5 UCL are pr ults of the si er, simulatic	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL in ulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets.	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308 309 310 311	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL 95% Adjusted Gamma UCL Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howey	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5 UCL are pr ults of the si er, simulatic	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 000000000000000000000000000000000000	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL 95% Adjusted Gamma UCL Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howey	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5 UCL are pr ults of the si er, simulatic	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL in ulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets.	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL 95% Adjusted Gamma UCL Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howey	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5 UCL are pr ults of the si er, simulatic	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL in ulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets.	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL 95% Adjusted Gamma UCL Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howey	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5 UCL are pr ults of the si er, simulatic	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL in ulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets.	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL 95% Adjusted Gamma UCL Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howev For additional insigh	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5 UCL are pr ults of the si er, simulatic	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL in ulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets.	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL 95% Adjusted Gamma UCL Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howev For additional insigh	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5 UCL are pr ults of the si er, simulatic the user m	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL in ulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets.	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308 307 310 311 312 313 314 315 316 317	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL 95% Adjusted Gamma UCL Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howev For additional insigh	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5 UCL are pr ults of the si er, simulatic the user m	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use UCL to Use ovided to help the user to select the most appropriate 95% UCL. imulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets. hay want to consult a statistician.	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL 95% Adjusted Gamma UCL Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howev For additional insigh	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5 UCL are pr ults of the si er, simulation the user m General	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use UCL to Use ovided to help the user to select the most appropriate 95% UCL. imulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets. hay want to consult a statistician.	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308 307 308 309 310 311 312 313 314 315 316 317 318 318 319	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL 95% Adjusted Gamma UCL Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howev For additional insigh	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5 UCL are pr ults of the si er, simulation the user m General	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use UCL to Use ovided to help the user to select the most appropriate 95% UCL. imulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets. nay want to consult a statistician.	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 317 318 319 320	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL 95% Adjusted Gamma UCL Note: Suggestions regarding the selection of a 95% These recommendations are based upon the resi and Singh and Singh (2003). Howev For additional insigh TRH F2	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5 UCL are pr ults of the si er, simulatic nt the user m General 35	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use UCL to Use ovided to help the user to select the most appropriate 95% UCL. imulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets. hay want to consult a statistician.	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 316 317 318 319 320 321	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL 95% Adjusted Gamma UCL Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insigh TRH F2	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5 UCL are pr ults of the si er, simulation the user m General 35 25	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL WCL to Use UCL to Use UCL to Use ovided to help the user to select the most appropriate 95% UCL. imulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets. hay want to consult a statistician.	109.8 100.5 140.2 225.4
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 317 318 319 320	95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Adjusted Gamma UCL 95% Adjusted Gamma UCL Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insigh TRH F2 TRH F2 Total Number of Observations Minimum Maximum	98.88 98.02 103.5 105.8 119.5 169 Suggested 107.5 UCL are pr ults of the si er, simulatic nt the user m General 35 25 130	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 000000000000000000000000000000000000	109.8 100.5 225.4 225.4

	A B C D E	F	G H I J K	L
325	Shapiro Wilk Test Statistic	0.173	Shapiro Wilk GOF Test	
326	5% Shapiro Wilk Critical Value	0.173	Data Not Normal at 5% Significance Level	
327	Lilliefors Test Statistic	0.934	Lilliefors GOF Test	
328	5% Lilliefors Critical Value	0.539	Data Not Normal at 5% Significance Level	
329			Significance Level	
330				
331	۵۵	suming Nor	nal Distribution	
332	95% Normal UCL	summy Non	95% UCLs (Adjusted for Skewness)	
333	95% Student's-t UCL	33.07	95% Adjusted-CLT UCL (Chen-1995)	36.14
334		55.07	95% Modified-t UCL (Johnson-1978)	33.57
335				55.57
336		Gamma	GOF Test	
337	A-D Test Statistic	13.16	Anderson-Darling Gamma GOF Test	
338	5% A-D Critical Value	0.749	Data Not Gamma Distributed at 5% Significance Leve	1
339	K-S Test Statistic	0.749	Kolmogrov-Smirnoff Gamma GOF Test	1
340	5% K-S Critical Value	0.340	Data Not Gamma Distributed at 5% Significance Leve	
341			ed at 5% Significance Level	1
342				
343		Commo	Statistics	
344		7.713	k star (bias corrected MLE)	7.071
345	k hat (MLE)			
346	Theta hat (MLE)	3.63 539.9	Theta star (bias corrected MLE)	3.96 495
347	nu hat (MLE)			
348	MLE Mean (bias corrected)	28	MLE Sd (bias corrected)	10.53
349		0.0405		444.4
350	Adjusted Level of Significance	0.0425	Adjusted Chi Square Value	442.1
351				
352		-	ma Distribution	21.25
353	95% Approximate Gamma UCL (use when n>=50))	31.19	95% Adjusted Gamma UCL (use when n<50)	31.35
354				
355		-	GOF Test	
356	Shapiro Wilk Test Statistic	0.173	Shapiro Wilk Lognormal GOF Test	
357	5% Shapiro Wilk Critical Value	0.934	Data Not Lognormal at 5% Significance Level	
358	Lilliefors Test Statistic	0.539	Lilliefors Lognormal GOF Test	
359	5% Lilliefors Critical Value	0.15	Data Not Lognormal at 5% Significance Level	
360	Data Not L	ognormal at	5% Significance Level	
361				
362			I Statistics	
363	Minimum of Logged Data	3.219	Mean of logged Data	3.266
364	Maximum of Logged Data	4.868	SD of logged Data	0.279
365			much Distribution	
366			ormal Distribution	04.44
367	95% H-UCL	29.68	90% Chebyshev (MVUE) UCL	31.11
368	95% Chebyshev (MVUE) UCL	32.88	97.5% Chebyshev (MVUE) UCL	35.34
369	99% Chebyshev (MVUE) UCL	40.16		
370			-	
		tric Distribu	tion Free UCL Statistics	
371			emille Distribution (0.05)	
371 372	Nonparame Data do not fe			
	Data do not fo	ollow a Disc		
372	Data do not fo	ollow a Disc ametric Dist	tribution Free UCLs	
372 373	Data do not fo Nonpar 95% CLT UCL	ametric Dist	tribution Free UCLs 95% Jackknife UCL	N/A
372 373 374	Data do not fo Nonpar 95% CLT UCL 95% Standard Bootstrap UCL	ametric Disc 32.93 N/A	tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL	N/A
372 373 374 375	Data do not fo Nonpar 95% CLT UCL	ametric Dist	tribution Free UCLs 95% Jackknife UCL	

	А	В	С	D	E	F	G	Н		J	K	L
379			90% Ch	ebyshev(Me	an, Sd) UCL	37			95% Ch	nebyshev(Me	an, Sd) UCL	41.08
380			97.5% Ch	ebyshev(Me	an, Sd) UCL	46.73			99% Cł	nebyshev(Me	an, Sd) UCL	57.85
381												
382						Suggested	UCL to Use					
383				95% Stu	dent's-t UCL	33.07			1	or 95% Mo	odified-t UCL	33.57
384												
385		Note: Sugges	stions regard	ing the selec	tion of a 95%	5 UCL are pr	ovided to hel	p the user to	select the n	nost appropri	ate 95% UCL	
386		These reco	ommendatior	is are based	upon the res	ults of the si	mulation stud	dies summa	rized in Singl	h, Singh, and	l laci (2002)	
387			and Singh	and Singh (2	2003). Howev	ver, simulatio	ons results wi	ill not cover a	all Real Worl	d data sets.		
388				For ad	ditional insig	ht the user m	nay want to c	onsult a stat	istician.			
389												

APPENDIX D REMEDIATION ACCEPTANCE CRITERIA

Table D-1 Soil Remediation Criteria

				Heavy	Metals					ΡΑ	Hs			вт	ΈX			
Criteria	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Carcinogenic PAHs (as B(α)P TEQ)	Benzo(α)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2
HIL A- Residential	100	20	100 Cr(VI)	6,000	6,000	40	400	7,400	3		300							
HIL B - Residential	500	150	500 Cr (VI)	30,000	1,200	120	1,200	60,000	4		400							
HIL C - Recreational Open Space	300	9	300 Cr (VI)	17,000	600	80	1,200	30,000	3		300							
HIL D - Commercial Industrial	3,000	900	3,600 Cr (VI)	240,000	1,500	730	6,000	600,000	40		300							
				Sour	ce depths	(0 m to	<1 m BG	SL)				5	0.7	480	NL	110	50	280
HSL A & B - Residential				Sour	ce depths	(1 m to	₀ <2 m BG	iL)				NL	1	NL	NL	310	90	NL
HOE A C D A CONCINCI				Sour	ce depths	(2 m to	o <4 m BG	iL)				NL	2	NL	NL	NL	150	NL
					Source of		,					NL	3	NL	NL	NL	290	NL
				Sourc	ce depths	(0 m to	o <1 m BG	iL)				NL	NL	NL	NL	NL	NL	NL
HSL C - Recreational Open Space				Sour	ce depths	(1 m to	o <2 m BG	iL)				NL	NL	NL	NL	NL	NL	NL
				Sour	ce depths	-		iL)				NL	NL	NL	NL	NL	NL	NL
					Source of							NL	NL	NL	NL	NL	NL	NL
					ce depths	-						NL	4	NL	NL	NL	310	NL
HSL D - Commercial Industrial					ce depths	-						NL	6	NL	NL	NL	180	NL
				Sour	ce depths	-		iL)				NL	9	NL	NL	NL	NL	NL
					Source o	depths (4	4m +) I					NL	20	NL	NL	NL	NL	NL
EILs / ESLs	100		205	90	1,260		35	190		33 *		170	50	85	70	105	180	120
Management Limits – <i>Residential, parkland and public open space</i> Coarse grained soil texture ¹																	700	1,000
Asbestos contamination HSL – A <i>Residential</i> Bonded ACM (%w/w)																		
Asbestos contamination HSL – B <i>Residential</i> Bonded ACM (%w/w)																		
Asbestos contamination HSL – C <i>Recreational</i> Bonded ACM (%w/w)																		
Asbestos contamination HSL – D Commercial Industrial Bonded ACM (%w/w)																		
Asbestos contamination HSL for Non Bonded / Friable Asbestos (%w/w)																		

Т	RH		Pestic	ides	PCBs	Asbestos
	F3	F4	OCPs	OPPs	Total	Presence / absence
			240		1	
			600		1	
			400		1	
			3600		7	
)	300	2,800	180			
0	3,500	10,000				
						0.01
						0.04
						0.02
						0.05
						0.001

NOTES:

NOTES.	
HIL A	NEPC 1999 Amendment 2013 'HIL A' - Health based Residential with garden / accessible soil, also includes children's day care centres, preschools and primary schools.
HIL B	NEPM 1999 Amendment 2013 'HIL B' Health Based Investigation Levels applicable for residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.
HIL C	NEPC 1999 Amendment 2013 'HIL C' - Health based public open space such as parks, playgrounds, playing fields, secondary schools and footpaths.
HIL D	NEPC 1999 Amendment 2013 'HIL C' - Health based public open space such as parks, playgrounds, playing fields, secondary schools and footpaths.
HSL A & B	NEPM 1999 Amendement 2013 'HSL A & B' Health Based Investigation Levels applicable for low to high density residential use.
HSL C	NEPC 1999 Amendment 2013 'HIL C' - Health based public open space such as parks, playgrounds, playing fields, secondary schools and footpaths.
HSL D EIL / ESL	NEPC 1999 Amendment 2013 'HIL C' - Health based public open space such as parks, playgrounds, playing fields, secondary schools and footpaths. Ecological investigation levels: EIL – Generic EIL for aged Arsenic and Naphthalene, Calculated EILs for other metals in urban residential and public open space settings with due regard for background concentrations, soil cation exchange capacity, texture and pH, Ref. NEPC 2013, Schedule B1, Tables 1B(1) to 1B(5).
	ESL – Ecological Screening Level for F1, F2, F3, F4, BTEX and Benzo(a)pyrene in coarse texture soils in urban residential and public open space settings, Ref. NEPC 2013, Schedule B1, Table 1B(6). Benzo(a)pyrene criteria based on CRC Care Technical Report No. 39, 'Risk-based management guidance for benzo(a)pyrene' (2017).
NL	'Not Limiting' - The soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical.
NR	No current published criterion.
1	Coarse Grained soil values were applied, being the most conservative of the material types.
F1	To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
F2	To obtain F2 subtract Naphthalene from the >C10-C16 fraction.
F3	(>C16-C34)
F4	(>C34-C40)
	Caraina gania DALlay UII, is based on the 9 persinagania DALla and their TEEs (national relative to D(s)D) adopted by COME 2009 (refer Schedule DZ). The D(s)D TEO is

Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF, given below, and summing these products.

Total PAHs: HIL is based on the sum of the 16 PAHs most commonly reported for contaminated sites (WHO 1998). The application of the total PAH HIL should consider the presence of carcinogenic PAHs and naphthalene (the most volatile PAH). Carcinogenic PAHs reported in the total PAHs should meet the B(a)P TEQ HIL. Naphthalene reported in the total PAHs should meet the relevant HSL.

Table D-2 Groundwater Investigation Levels

				Heav	y Metals	-					PAHs				BTEX	-			. 1	RHs	-	Other	VOC	s
	Criteria	As	Cd	Cr	Cu	РЬ	Hg	Ni	Zn	Total PAHs	Benzo(α)pyrene	Naphthalene	Benzene	Toluene	Ethylbenzene	o-xylene	m/p-xylene	F1	F2	F3	F4	Phenols (Total)	Total VOC	Acetone (2-propanone)
					2 m to							NL	5,000	NL	NL	NL	NL	NL	NL		1	I	1 1	
HSL A & B - Low t	to High Density Residential				4 m to							NL	5,000	NL	NL	NL	NL	NL	NL					
					8 m							NL	5,000	NL	NL	NL	NL	NL	NL					
					2 m to	< 4m						NL	NL	NL	NL	NL	NL	NL	NL					
HSL C - Rec	reational Open Space				4 m to	<8 m						NL	NL	NL	NL	NL	NL	NL	NL					
					8 m	+						NL	NL	NL	NL	NL	NL	NL	NL					
					2 m to ·	< 4m						NL	30,000	NL	NL	NL	NL	NL	NL					
HSL D - Co	ommercial Industrial				4 m to	<8 m						NL	30,000	NL	NL	NL	NL	NL	NL					
					8 m	+						NL	35,000	NL	NL	NL	NL	NL	NL					
ANZC (2018)	Fresh Water ⁴	24 (AsIII) ⁴ 13 (AsV)	0.2 4	3.3 (CrIII) ⁴ 0.4 (Cr VI)	1.4 ⁴	3.4 ⁴	0.6 ⁴	11⁴	8 4			16 ⁴	950 ⁴	180 ^{8 ,4}	80 ⁹	350 ^{8,4}	275 ^{8,4}	50 ⁷	60 ⁷	500 7	500 ⁷	320 ⁴		
ANZG (2018)	Marine Water ⁴		5.5	27.4 (CrIII) ⁴ 4.4 (Cr VI)	1.3 ⁴	4.4 4	0.4 ⁴	70 ⁴	15 ^{2,4}			70 ⁴	700 ⁴	180 ⁹	5⁴	350 ⁹	275 ⁹	50	60	500 ⁷	500	400 ⁴		
NHMRC (2017)	Recreational Water ^{5,6}	100	20	50	1000 *	100	10	200	3000		0.01		10	25 *	3*	20 *	20 *					2		

Notes:

- 1. Values have been calculated using a hardness of 30mg/L CaCO3 refer to ANZG (2018) for further guidance on recalculating for site-specific hardness.
- 2. Figure may not protect key species from chronic toxicity, refer to ANZG (2018) for further guidance
- 3. Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZG (2018) for further guidance
- 4. NEPC (2013) Groundwater Investigation Levels for marine water quality, based on ANZG (2018).
- 5. NEPC (2013) Groundwater Investigation Levels for drinking water quality, based on Australian Drinking Water Guidelines (NHMRC 2018).
- 6. Drinking Water value has been based on NHMRC (2017) Drinking Water Guidelines. The lowest of the Health Guideline x10 or the Aesthetic Guideline has been chosen as the assessment criteria. Where no NHMRC (2017) Recreational Water Criteria provided, ANZAST (2018) Recreational Criteria have been utilised.
- 7. In lack of a criteria the laboratory PQL has been used.
- 8. F1: concentration of TRH C6-C10 fraction minus the sum of BTEX concentrations.
- 9. F2: concentration of TRH >C10-C16 fraction minus the concentration of Naphthalene.
- 10. F3: concentration of TRH >C16-C34.
- 11. F4: concentration of TRH >C34-C40.
- 12. Low to moderate reliability toxicity data, refer to ANZECC & ARMCANZ (2000)

• • • •	Maximum Values of <i>Specific Contaminant Concentration</i> for Classification <u>without</u> TCLP								
Contaminant	General Solid Waste CT1 (mg/kg)	Restricted Solid Waste CT2 (mg/kg)							
Arsenic	100	400							
Asbestos	"Special Waste - Asbestos	Waste" if ANY Asbestos is presen							
Benzene	10	40							
Benzo(a)pyrene	0.8	3.2							
Cadmium	20	80							
Chromium (VI)	100	400							
Cyanide (amenable)	70	280							
Ethylbenzene	600	2,400							
Lead	100	400							
Mercury	4	16							
Nickel	40	160							
Petroleum hydrocarbons C ₆ -C ₉	650	2,600							
Petroleum hydrocarbons C ₁₀ -C ₃₆	10,000	40,000							
Polychlorinated biphenyls (PCB)	<50	<50							
Polycyclic aromatic hydrocarbons (total PAH)	200	800							
Tetrachloroethylene (PCE)	14	56							
Toluene	288	1,152							
Trichloroethylene (TCE)	10	40							
Vinyl Chloride (VC)	4	16							
Xylenes (total)	1,000	4,000							

Table D-3 Waste Classification without Leachate Testing

Note: N/A = not applicable (assessed using SCC1 and SCC2 values, only) see Table D-4

	Maximum Values for <i>Leachable Concentration</i> and Specific Contaminant Concentration when used <u>together</u>										
-	General S	olid Waste	Restricted	Solid Waste							
Contaminant	Leachable Concentration	Specific Contaminant Concentration	Leachable Concentration	Specific Contaminant Concentration SCC2 (mg/kg)							
	TCLP1 (mg/L)	SCC1 (mg/kg)	TCLP2 (mg/L)								
Arsenic	5.0	500	20	2,000							
Asbestos	"Special V	Waste - Asbestos Wa	ste" if ANY Asbestos	s is present							
Benzene	0.5	18	2	72							
Benzo(a)pyrene	0.04	10	0.16	23							
Cadmium	1.0	100	4	400							
Chromium (VI)	5	1,900	20	7,600							
Cyanide (amenable)	3.5	300	14	1,200							
Ethylbenzene	30	1,080	120	4,320							
Lead	5	1,500	20	6,000							
Mercury	0.2	50	0.8	200							
Nickel	2	1,050	8	4,200							
Petroleum hydrocarbons C_6 - C_9	N/A	650	N/A	2,600							
Petroleum hydrocarbons C_{10} - C_{36}	N/A	10,000	N/A	40,000							
Polychlorinated biphenyls (PCB)	N/A	<50	N/A	<50							
Polycyclic aromatic hydrocarbons (total PAH)	N/A	200	N/A	800							
Tetrachloroethylene (PCE)	0.7	25.2	2.8	100.8							
Toluene	14.4	518	57.6	2,073							
Trichloroethylene (TCE)	0.5	18	2	72							
Vinyl Chloride (VC)	0.2	7.2	0.8	28.8							
Xylenes	50	1,800	200	7,200							

Table D-4 Waste Classification using TCLP and SCC Values

Note: N/A = not applicable (assessed using SCC1 and SCC2 values, only)

APPENDIX E REVIEW OF REMEDIAL OPTIONS AND TECHNOLOGIES

REVIEW OF REMEDIATION OPTIONS AND TECHNOLOGIES

A number of soil remediation options were reviewed to examine the suitability of each method, in considering the remedial options available for the site, the surrounding lands and the geological and hydrogeological limitations, the following issues have been considered:

- Prioritisation of works in areas of most concern;
- Ability of remedial method to treat contamination with respect to natural and infrastructure limitations;
- Remedial timetable;
- Cost effectiveness;
- Defensible method to ensure the site is remediated to appropriate levels / validation criteria; and
- Regulatory compliance.

The following sections provide details on various remediation options for the material found on site.

E1 FILL, SOILS & RESIDUAL CLAYS

E1.1. BIOVENTING

Bioventing stimulates the natural in situ biodegradation of aerobically degradable compounds in soil by increasing oxygen flow to existing soil microorganisms. In contrast to soil vapour vacuum extraction, bioventing uses low air flow rates to provide only enough oxygen to sustain microbial activity. Oxygen is most commonly supplied through direct air injection into residual contamination in soil. In addition to degradation of adsorbed fuel residuals, volatile compounds are biodegraded as vapours move slowly through biologically active soil. Bioventing techniques have been successfully used to remediate soils contaminated by petroleum hydrocarbons, non-chlorinated solvents, some pesticides, wood preservatives, and other organic chemicals.

Factors that may limit the applicability and effectiveness of the process include:

- A high water table within 1-2 m of the surface, saturated soil lenses, or low permeability soils all may reduce bioventing performance.
- Vapours can build up in basements or underneath buildings within the radius of influence of air injection wells. This problem can be alleviated by extracting air near the structure of concern.
- Extremely low soil moisture content may limit biodegradation and the effectiveness of bioventing.
- Monitoring of off-gases at the soil surface may be required.
- Aerobic biodegradation of many chlorinated compounds may not be effective unless there is a cometabolite present, or an anaerobic cycle.

E1.2 ENHANCED BIOREMEDIATION

Enhanced bioremediation is a process in which indigenous or inoculated micro-organisms (e.g., fungi, bacteria, and other microbes) degrade organic contaminants found in soil and/or ground water, converting them to harmless end products. Nutrients, oxygen, or other additives are used to enhance bioremediation and contaminant desorption from subsurface materials. In the presence of sufficient oxygen (aerobic conditions), and other nutrient elements, microorganisms will ultimately convert many organic contaminants to carbon dioxide, water, and microbial cell mass. In the absence of oxygen (anaerobic conditions), the organic contaminants will be ultimately metabolized to methane, limited amounts of carbon dioxide, and trace amounts of hydrogen gas. Under sulfate-reduction conditions, sulfate is converted to sulfide or elemental sulfur, and under nitrate-reduction conditions, nitrogen gas is ultimately produced.

Factors that may limit the applicability and effectiveness bio remediation of the process include:

- Interaction between the soil matrix and microorganisms influence the results.
- Contaminants may be subject to leaching requiring treatment of the underlying ground water.
- Preferential flow paths may severely decrease contact between injected fluids and contaminants throughout the contaminated zones. The system should not be used for clay, highly layered, or heterogeneous subsurface environments because of oxygen (or other electron acceptor) transfer limitations.
- High concentrations of heavy metals, highly chlorinated organics, long chain hydrocarbons, or inorganic salts may be toxic to microorganisms.
- A surface treatment system, such as air stripping or carbon adsorption, may be required to treat extracted groundwater prior to re-injection or disposal.
- The length of time required for treatment can range from 6 months to 5 years and is dependent on many site-specific factors.

E1.3 CAPPING AND CONTAINMENT

The "cap and contain" method employs a risk minimisation approach similar to "ongoing management", where impacted soils are managed on site so as not to pose an ongoing risk to the environment or human health. Impacted soils are contained by the placement of an impervious barrier or clean fill materials on top of the impacted material to prevent exposure to site occupiers, workers or the environment. The base of this "clean zone" would be clearly marked by a demarcation barrier to indicate that below this depth workers could potentially be exposed to contamination, which would then trigger additional health, safety and environmental controls.

Capping and containment may be an appropriate remedial option for soil containing both organic and inorganic contaminants that contain residual contamination, particularly if the mix of contaminants is not easily treated. The conditions for this remedial action alternative are:

- The contaminant is relatively non-mobile, including low volatility, insoluble and has low migration potential in a soil matrix;
- The primary exposure route to the contaminant and risk to human health is through direct dermal contact, dust inhalation or soil ingestion;
- The primary exposure route for the environment is mitigated through low leaching potential or migration to groundwater; and
- The contained area can be monitored and incorporated into any final land-use plans.

In the use of capping and containment, the focus of the response is to prevent contact with, or exposure to the contaminated soils by human receptors and/or eliminate transport by water to off-site receptors.

E1.4 CHEMICAL OXIDATION/INJECTION

Chemical oxidation remedial strategies involve the addition of an oxidising agent to the soil or groundwater. The rate and extent of degradation of a target chemical of concern is dependent on its susceptibility to oxidative degradation as well as the site conditions, such as pH, temperature, the concentration of oxidant, and the concentration of secondary oxidant-consuming substances such as natural organic matter.

Factors which may limit the applicability and effectiveness of chemical oxidation include:

- Requirement for handling large quantities of hazardous oxidizing chemicals due to the oxidant demand of the target organic chemicals and the unproductive oxidant consumption of the formation;
- Some chemicals of concern are resistant to oxidation; and
- There is a potential for process-induced detrimental effects.

E1.5 EXCAVATION AND OFF-SITE DISPOSAL

Excavation and disposal of contaminated wastes is a frequently used option, typically used when a rapid site remediation program is required or where significant subsurface contamination exists that is potentially impacting on sensitive off-site receptors. Wastes must be classified in accordance with the NSW EPA Guidelines.

Based on the required disposal of the landfill material, this option would adequately address the remediation goals through the removal of the contaminants from the site. Furthermore, with the removal of any identified contaminated fill soils, the long-term liability associated with soil contamination shall be minimised, along with substantial improvement of subsurface site conditions with regard to contamination of soil and groundwater.

E1.6 LAND FARMING

Ex situ land-farming is a proven treatment for petroleum hydrocarbon impacted soils. In general the higher the molecular weight or number of rings in a compound, the slower the degradation rate.

Factors that may limit the applicability and effectiveness of the land farming include:

- The large amount of space required.
- Conditions affecting biological degradation of contaminants (e.g., temperature, rain fall) are largely uncontrolled, which increases the length of time to complete remediation.
- Only suitable for organic contaminants.
- Volatile contaminants, such as solvents, must be pre-treated because they would volatilise into the atmosphere, causing air pollution.
- Dust control is an important consideration, especially during tilling and other material handling operations.
- Runoff collection facilities must be constructed and monitored.

E2 GROUNDWATER

E2.1 ENHANCED BIOREMEDIATION

Bioremediation is a process in which indigenous micro-organisms (i.e., fungi, bacteria, and other microbes) degrade organic contaminants found in soil and/or ground water.

Enhanced bioremediation attempts to accelerate the natural biodegradation process by providing nutrients, electron acceptors, and competent degrading microorganisms that may otherwise be limiting the rapid conversion of contamination organics to innocuous end products.

Oxygen enhancement can be achieved by either sparging air below the water table or circulating hydrogen peroxide (H_2O_2) throughout the contaminated ground water zone. Under anaerobic conditions, nitrate is circulated throughout the ground water contamination zone to enhance bioremediation. Additionally, solid-phase peroxide products (e.g., oxygen releasing compound (ORC)) can also be used for oxygen enhancement and to increase the rate of biodegradation.

Air sparging below the water table increases ground water oxygen concentration and enhances the rate of biological degradation of organic contaminants by naturally occurring microbes. Air sparging also increases mixing in the saturated zone, which increases the contact between ground water and soil. Oxygen enhancement with air sparging is typically used in conjunction with SVE or bioventing to enhance removal of the volatile component under consideration.

During hydrogen peroxide enhancement, a dilute solution of hydrogen peroxide is circulated through the contaminated ground water zone to increase the oxygen content of ground water and enhance the rate of aerobic biodegradation of organic contaminants by naturally occurring microbes.

Solubilized nitrate is circulated throughout ground water contamination zones to provide an alternative electron acceptor for biological activity and enhance the rate of degradation of organic contaminants. Development of nitrate enhancement is still at the pilot scale. This technology enhances the anaerobic biodegradation through the addition of nitrate.

Bio-enhanced remediation strategies are slow and may take several years for plume clean-up.

E2.2 AIR SPARGING

In air sparging, air is injected into a contaminated aquifer where it traverses horizontally and vertically in channels through the soil column, creating an underground stripper that removes contaminants by volatilization. This injected air helps to flush (bubble) the contaminants up into the unsaturated zone where a vapour extraction system is used to remove the vapour phase contamination.

In principal the more volatile a contaminant the more appropriate air sparging as a remediation strategy is. Methane can be added to the system to enhance co-metabolism of chlorinated organics.

Factors that may limit the applicability and effectiveness of the process include:

- Preferential air flow pathways reducing the contact between sparged air and the contaminants;
- Air injection wells must be designed for site-specific conditions; and
- Soil heterogeneity may cause some zones to be relatively unaffected.

E2.3 CHEMICAL OXIDATION

In a chemical oxidation system oxidants are added to the system in order to oxidise the chemical of concern to less toxic species. The Chemical oxidants most commonly employed include peroxide, ozone, and permanganate. These oxidants cause the rapid and complete chemical destruction of many toxic organic chemicals while some chemicals are subject to partially degradation and subsequently reduced by bioremediation.

In general, oxidants are capable of achieving high treatment efficiencies (e.g. >90%) for unsaturated aliphatic (e.g., trichloroethylene [TCE]) and aromatic compounds (e.g. benzene), with very fast reaction rates (90% destruction in minutes). Field applications have clearly affirmed that matching the oxidant and *in situ* delivery system to the contaminants of concern (COCs) and the site conditions is the key to successful implementation and achieving performance goals.

Oxidation using liquid hydrogen peroxide (H_2O_2) in the presence of native or supplemental ferrous iron (Fe⁺²) produces Fenton's Reagent which yields free hydroxyl radicals (OH-). These strong, nonspecific oxidants can rapidly degrade a variety of organic compounds. Fenton's Reagent oxidation is most effective under very acidic pH (e.g. pH 2-4) and becomes ineffective under moderate to strongly alkaline conditions. The reactions are extremely rapid and follow second-order kinetics.

Ozone gas can oxidize contaminants directly or through the formation of hydroxyl radicals. Like peroxide, ozone reactions are most effective in systems with acidic pH. Due to ozone's high reactivity and instability, O_3 is usually produced onsite and requires closely spaced delivery points (e.g. air sparging wells). *In situ* decomposition of the ozone can lead to beneficial oxygenation and biostimulation.

The following factors may limit the applicability and effectiveness of chemical oxidation include:

- Requirement for handling large quantities of hazardous oxidizing chemicals due to the oxidant demand of the target organic chemicals and the unproductive oxidant consumption of the formation.
- Some COCs are resistant to oxidation.
- There is a potential for process-induced detrimental effects. Further research and development is ongoing to advance the science and engineering of *in situ* chemical oxidation and to increase its overall cost effectiveness.

E2.4 REACTIVE BARRIER WALL

Construction of a permeable reactive barrier (PRB) involves the subsurface emplacement of reactive materials through which a dissolved contaminant plume enters on one side of the PRB and treated water exits the other side. This *in situ* method for remediating dissolved-phase contaminants in groundwater combines a passive chemical or biological treatment zone with subsurface fluid flow management.

PRBs can be installed as permanent or semi-permanent units. The most commonly used PRB configuration is that of a continuous trench in which the treatment material is backfilled. The trench is perpendicular to and intersects the groundwater plume.

Alternately low-permeability walls can be used to direct a groundwater plume toward a permeable treatment zone.

E2.5 PUMP AND TREAT

As its name implies, a pump and treat remedial involves the pumping of contaminated of ground water pumping include removal of dissolved contaminants from the subsurface, and containment and treatment the water. The treated groundwater is then either re-introduced into the aquifer or disposed off-site.

The criteria for well design, pumping system and treatment are dependent on the physical site characteristics and contaminant type. While treatment options may include a train of processes such as gravity segregation, air strippers, and activated carbon filters designed to remove specific contaminants.

The first step in determining whether ground water pumping is an appropriate remedial technology is to conduct a site characterization investigation. Site characteristics, such as hydraulic conductivity, will determine the range of remedial options possible. Chemical properties of the site and plume need

to be determined to characterize transport of the contaminant and evaluate the feasibility of ground water pumping. To determine if ground water pumping is appropriate for a site, one needs to know the history of the contamination event, the properties of the subsurface and the biological and chemical contaminant characteristics. Identifying the chemical and physical site characteristics, locating the ground water contaminant plume in three dimensions and determining aquifer and soil properties are necessary in designing an effective ground water pumping strategy.

The following factors may limit the applicability and effectiveness of ground water pump and treat options as a remedial option:

- The time frame required to achieve the remediation goal;
- The pumping system fail to contain the contaminant plume as predicted;
- Residual saturation of the contaminant in the soil pores cannot be removed by ground water pumping;
- A pump and treat option is not suitable for contaminants with:
 - high residual saturation;
 - high sorption capabilities; and
 - homogeneous aquifers with hydraulic conductivity less than 10⁻⁵ cm/sec;
- Potential high operating costs;
- Biofouling of the extraction wells and associated treatment stream may severely affect system performance;
- Subsurface heterogeneities, may severely affect system performance;
- · Potential toxic effects of residual surfactants in the subsurface;
 - Drawdown pumping generally produces large volumes of water requiring storage and or treatment.

E2.6 EXCAVATION

Excavation and disposal of contaminated wastes is a frequently used option, typically used when a rapid site remediation program is required or where significant subsurface contamination exists that is potentially impacting on sensitive off-site receptors. Excavation can also be used to remove primary sources of any groundwater contamination (such as buried tanks or drums and waste disposal areas) and remove the secondary sources of impact (contaminated fill, residual soils and impacted bedrock and bedrock fractures such as joints and bedding planes).

E3 REMEDIATION OPTIONS

The various remediation options were reviewed in a technology matrix to assess their suitability against the various subsurface materials at the site and whether the option meets the primary objectives of the remediation works program, as discussed in **Section 7.3**.

